
CARACTERÃ�STICAS Y REGLAS DE LOS CONSTRUCTORES

El nombre del constructor debe ser el mismo que el de su clase• 
No debe tener ningun tipo de retorno ni siquiera void• 
Una clase puede tener distintos tipos de constructores o ninguno, el compilador asigna uno
automÃ¡ticamente a esa clase

• 

Un constructor predeterminado es aquel que no tiene ningÃºn tipo de parÃ¡metro o posee una lista de
parÃ¡metros donde todos ellos son predeterminados

• 

// constructor sin parÃ¡metros

class punto {

double x;

double y;

public:

punto();

……

};

// la misma clase con constructor con argumentos

// predeterminados

class punto {

double x;

double y;

public:

punto(double xval=0, double yval=0);

……

};

El constructor de copia permite crear una instancia de clase usando una instancia existente• 

class punto {

double x;

double y;

1



public:

punto();

punto(double xval, double yval);

punto(const punto& pt);

……

};

Ejemplo de construcciones :

punto p1; // llama al constructor predeterminado

punto p2(1.1, 1.3); // llama al constructor con dos

// argumentos

punto p3(p2);

CLASES AMIGAS

En algunos casos es necesario que una funciÃ³n que no es miembro de una clase pueda acceder a los
miembros privados de la clase en estos casos se denomina a la funciÃ³n amiga (friend).

vector multiplicar(const matriz& m, const vector &v)

{

vector r;

for(int i=0; i<3; i++) {// r[i]=m[i]*v;

r.elem(i)=0;

for (int j=0; j<3; j++)

r.elem(i)+=m.elem(i,j)*v.elem(j);

}

return r

}

class matriz;

class vector {

float v[4];

2



//…

friend vector multiplicar(const matriz&,const vector&);

};

class matriz {

vector v[4];

//…

friend vector multiplicar(const matriz&,const vector&);

};

La funciÃ³n friend no tiene nada particular excepto el derecho de acceder a la parte privada de una clase.

Una funciÃ³n friend se puede declarar tanto en la parte privada como en la pÃºblica de una clase.

La funciÃ³n amiga se declara explÃ−citamente en la clase en la cual es amiga â�´ forma parte de la interfase
de esa clase tanto como una funciÃ³n miembro. Se debe tener en cuenta que en la funciÃ³n friend no se puede
emplear el puntero this, por lo tanto se debe referenciar explÃ−citamente el miembro del objeto con el que se
estÃ¡ trabajando.

vector multiplicar(const matriz& m, const vector &v)

{

vector r;

for (int i=0; i<3; i++) {

r.v[i]=0;

for (int j=0; j<3; j++)

r.v[i]+=m.v[i][j]*v.v[j];

}

return r

}

Una funciÃ³n miembro de una clase puede ser amiga de otra

class X {

//…

void f();

3



};

class Y {

//…

friend void X::f();// la funciÃ³n miembro f de X es

// amiga de Y

};

Para declarar que todas las funciones miembros de una clase son amigas de otras tenemos :

class X {

…

friend class Y; // todas las funciones miembros de Y

… // son amigas de X

};

Universidad TecnolÃ³gica Nacional - Santa Fe - Departamento Sistemas -

Curso : Desarrollos de ProgramaciÃ³n en C++

4


	00088068.html

