IIC 2132 Estructuras y Representacion de Datos

Il Semestre 2003

TAREA 2

Mejor Caso |Peor Caso ICD:?osrze dio Estabilidad Xdeiggrr:; Comparacion
InsertionSort [O(n) O(n : ) O(n ’ ) Estable No Compara
Selectionsort [O(n”) O(n?) O(n”) No Estable |No Compara
BubbleSort  |O(n) O(n?) O(n?) Estable No Compara
ShellSort O(n lOg") Depende (*) |Depende (*) |No Estable |No Compara
HeapSort O(n logn) |O(n logn) [O(n logn) |No Estable |No Compara
MergeSort O(n lOg”) O(n lOg") O(n lOg”) Estable Si Compara
QuickSort O(n lOg”) O(n~ ) O(n logn) No Estable |No Compara
CountingSort O(n) O(n) O(n) Estable Si No compara
RadixSort O(n) O(n) O(n) Estable Si No compara

Tabla Resumen de los Algoritmos de Ordenacion

(*): Ver la especificacion en la pagina donde se desarrolla este Algoritmo.

Los Algoritmos

* InsertionSort :

- No tenemos ningln intercambio de registro con claves iguales por lo que este algoritmo es estable.

— También vemos que sélo requiere una variable adicional para realizar los intercambios, 0 sea, no requiere

memoria adicional.

— Este algoritmo funciona en base a comparaciones ( while((lista[j] > temp) && (j >= 0))) ).

— Para una lista de N elementos ordenada inversamente (Peor Caso) el ciclo externo (FOR) se ejecuta N-1
veces. El ciclo interno (WHILE) se ejecuta como maximo una vez en la primera iteracion, 2 veces en la
segunda, 3 veces en la tercera, etc. En otras palabras el ciclo interno se ejecuta i—1 veces lo que nos vuelv

dar una complejidad ())(2

).

" 2

-=n

. n
(i—-1)=

n’ —
0]

n o
)=0(n")




— En el mejor caso, o0 sea si la lista ya esta ordenada el ciclo interno o WHILE solo chequea la condicion pe
no itera lo que nos da una complejidad O(n-1) = O(n).

- El caso prome‘dio depende de cuan ordenados estén los datos en la lista por lo que la complejidad estara
entre O(n) y O¢~

).
» SelectionSort :

0JO: Aqui no puse el cédigo de la funcion Menor(lista, TAM, i) ya que es bastante simple y es lineal en bas
a comparaciones.

— Consulte libros y paginas de Internet y encontré versiones distintas sobre la supuesta estabilidad o
inestabilidad de este algoritmo. Lo que logré rescatar fue que si tengo dos registros con claves iguales, el q
ocupe la posicién mas baja sera el primero que sea identificado como menor, o sea que sera el primero en
movido. El segundo registro serd el menor en el siguiente ciclo y quedara en la posicién de al lado por lo tai
se mantiene el orden relativo por lo que podria ser estable. Lo que podria hacerlo inestable seria que el cicl
gue busca el elemento menor revisara la lista desde el final hacia atras. Como la mayoria de las fuentes qu
consulte decia inestable me quedo con que SelectionSort es Inestable.

— Sélo requiere una variable adicional para realizar los intercambios, o sea, no requiere memoria adicional.

—También apreciamos que funciona en base a comparaciones, las que estan dentro de la funcién Menor(lis
TAM, i).

- Vemos que tenemos un FOR externo que itera N veces para una lista de N elementos pero ademas dent
él tenemos en FOR de la funcion Menor(lista, TAM, i), que también busca linealmente al menor elemento d
la lista, 0 sea nuevamente tenemos una complejidad cuadratica porque tenemos N*N, con N del FOR exter
y N del FOR interno ( de la funcién Menor(lista, TAM, i) ). El peor caso es de comparaciones por lo que la
complejidad es O().

- El mejor caso (lista ordenada) vemos que la complejidad no cambia, sigue siendo O() ya que se ejecutan
igual los FOR de busqueda de Menor como el FOR externo.

- El caso promedio también es O(), porque si el peor y el mejor son cuadraticos, todas las posibles
combinaciones de ordenamientos de la lista también tardaran O().

» BubbleSort :
— Podemos apreciar que este algoritmo nunca intercambia registros con claves iguales. Por lo tanto es ests

— También vemos que sélo requiere una variable adicional para realizar los intercambios, o sea, no requiere
memoria adicional.

—También apreciamos que funciona en base a comparaciones ( if (lista[j] > lista[j+1]) ).

- Vemos que el FOR interno se ejecuta N veces si es que la lista es de N elementos y el FOR de afuera
también por lo que un FOR de N iteraciones dentro de otro de N iteraciones nos da un pegg caso de

comparaciones por lo que el orden eg O(

).



- El mejor caso, o sea si la lista ya esta ordenada toma una complejidad de O(n) ya que no entra al IF dent
del loop interno y se ahorra varias comparaciones.

- El caso promedio depende de cuan ordenados estén los datos en la lista pero la mejora es minima , o se:
seria algo asi como y sigue teniendo complejidad O().

* ShellSort :

0OJO: Este procedimiento recibe un arreglo a ordenar a[] y el tamafio del arreglo n. Utiliza en este caso una
serie de t=6 incrementos h=[1,4,13,40,121,364] para el proceso (asumimos que el arreglo no es muy grand

Se le llama también algoritmo de Ordenamiento de Incrementos Decrecientes. Este Algoritmo de ordenacié
tiene una particularidad que es que uno elige que incrementos usar, 0 sea uno elige una secuencia de nim
(o una sucesion) que seran los que usara el algoritmo para ir incrementando.

Entre las que han dado mejores resultados esta {1, 4, 13, 40, 121, 364, 1093,} gené?r'édalpor
2

i

-El tiempo que requiere este algoritmo depende siempre de que sucesion de Incrementos se use.

Con la sucesién propuesta por Shell: Peor CasqoE O(
). Caso Medio = Qf”

).

Con la sucesiod” —1

: Peor Caso = @("5

) Caso Medio = Qf'*

)

Con la sucesiod ™ +3 2* +1)
: Peor Caso = @ *
) Caso Medio = Q"'

)

- El mejor caso seria @( log n

— ShellSort no es estable porque se puede perder el orden relativo inicial con facilidad cuando usamos
incrementos grandes, ya que mira los 2 nUmeros separados por ese incremento y nada de lo al medio de e
nameros es considerado para conservar el orden inicial. Si usaramos solo incremento 1 ahi tendriamos
estabilidad, pero dejaria de ser ShellSort y pasaria a ser BubbleSort.

- No requiere memoria adicional, todo se ordena solo con una o dos variables temporales para hacer los
intercambios.

- Usa la comparacion en el WHILE mas interno por lo tanto esta en la categoria de los comparativos.

* HeapSort :



— Este algoritmo no es estable, no mantiene el orden relativo inicial porque elementos iguales pueden termi
en distintos niveles del heap.

- Vemos claramente en el c6digo que no requiere memoaria adicional para ordenar ya que solo ocupa 1 0 2
variables temporales para hacer los intercambie o exchange.

- Funciona también claramente a base de comparacion, Heapify ordena comparando al Padre con sus 2 hi
para luego ver si los cambia o no.

— En un heap de n elementos hay a lo mas n/2h+1 nodos de altura h, de modo que el costo de BUILD-HEZ/
es:

Ademés tenemos que el tiempo de ejecucion de HEAPIFY para un heap de n nodos es O(log n).
Y ademas tenemos un FOR dentro de HeapSort, lo que nos dice que HEAPIFY se ejecuta N-1 veces.

Por lo tanto el costo de HeapSort va a sér d()gz n

)

— Los Casos Medio y Mejor son tambiémO(logz n

) ya que igual entran al Build-Heap y al FOR, y en Heapify su tiempo de ejecucion sigue teniendo una
complejidad de O(log n).

* MergeSort :

- Vemos que este Algoritmo es recursivo y aparte que la funcion Merge requiere de un tiempo de 2n, n pas
para copiar la secuencia al arreglo b y los otros n para copiarlo de vuelta al arreglo a por lo tanto la
complejidad de MergeSort iterativamente seria:

T(1)=0

T(2) = 4 + 2*T(1)



Llegamos a la recursividad:

T(n) = 2n+ 2 T(n/2)

Y con esto tenemos que:

T(n) = O(nlog(n))

— Nuestro Mejor y Peor Caso son igualmente O(n log(n)) ya que las recursividades las hace igual, sea cual
el orden del arreglo y el Merge solo tarda 2n en copiar el arreglo al temporal y copiarlo de vuelta por lo que

no influye el ordenamiento.

- Este Algoritmo NO es In Situ, ya que requiere Memoria Adicional porque la funcién Merge copia el arreglc
A a uno temporal B, lo que requiere de memoria extra.

— MergeSort es estable, no altera el orden relativo inicial de los elementos con el mismo valor. Eso si deper
de la implementacion, hay MergeSorts que si son Inestables.

— Este Algoritmo si usa la comparacion, ya que en la funcién Merge tenemos un (if (b[i]<=b[j]) ).
* QuickSort :

— Este Algoritmo es inestable ya que si se pueden producir intercambios de claves con datos iguales, es
posible que se altere el orden relativo inicial del arreglo a ser ordenado.

— Este Algoritmo no requiere memoria adicional, ya que los subarreglos son ordenados In Situ.

—También apreciamos que funciona en base a comparaciones en los WHILEs dentro de PARTITION, ahi
compara varias veces.

— El caso promedio La complejidad para dividir una lista de n es O(n). De cada sublista se crean en promec
dos sublistas mas de largo n/2. Por lo tanto la complejidad se define en forma recurrente como:

f(1) =1

f(2) = 2 + 2*f(1)

Asi llegamos a la recursividad:
f(n) = n + 2*f(n/2)

Y esto significa una complejidad derO( logz n

).

- El Peor Caso de este Algoritmo es cuando la lista est4 ordenada (curiosamente) porque en cada llamada
recursiva el arreglo es dividido en una parte que contiene todos los elementos del arreglo menos el pivote (
venQria siendo el mayor o el menor de la lista) y otra vacia. En este caso la complejidad del algoritmo es
O~



— En el mejor caso el pivote es siempre la media de todos los elementos, de esta forma el arreglo se divide
dos partes equilibradas siendo la complejidad del algoritmo d}(g n

).
e CountingSort :

— Observamos claramente que este algoritmo no se basa en la Comparacion para ordenar sino que con 4 F
logra ordenar.

- Vemos también que no es In Situ ya que utiliza un arreglo C temporal en la memoria para entregar el
resultado en el arreglo B, siendo que el de entrada era el A.

— En el ler FOR la complejidad es O(K) (k es pardmetro de entrada), luego en el 2do FOR el tiempo es O(n
ya que lo hace mientras j <= Largo(A) y Largo(A) es n. Luego el 3er FOR el tiempo también es O(k) y en el
4to es nuevamente O(n).

Con esto tenemos un O(n+k) y como k<n eso es O(n).

- Los Casos Medio y Mejor son igualmente O(n) ya que como este algoritmo es netamente iterativo y no
compara hace enteros los 4 FORs sea cual sea el ordenamiento que tenga el input.

- Es un algoritmo estable, no cambia la posicion relativa de claves con el mismo valor porque en los FORs
chequea los elementos de los arreglos uno por uno entonces no pierde la informacion de las posiciones
relativas de datos iguales, las mueve tal cual, 1 por una al arreglo temporal y luego al del output.

» RadixSort :

- Vemos claramente que RadixSort es estable porque la funcién que procesa todo es CountingSort y la
estabilidad de esta la analizamos en la pagina anterior. Ademas el FOR de RadixSort no influye en la
estabilidad.

— También notamos que no se basa en la comparacién para ordenar ya que CountingSort tampoco lo hace
solo con los FORs ordena pero sin comparar entre los valores de las claves. El FOR de RadixSort no hace
comparaciones.

— Claramente este algoritmo utiliza memoria adicional, ya que se basa en la ejecucion de CountingSort que
ocupa un arreglo temporal que deber cargado en memoria para poder copiar los valores ordenadamente al
output.

— Como habiamos demostrado antes el tiempo de ejecucion de CountingSort es de O(n) entonces ahora
CountingSort se ejecuta d veces con un d<n por lo tanto el tiempo de ejecucién de RadixSort serd O(d*n) =
o(n)

- Los Casos Peor y Medio son también de tiempo lineal ( O(n) ) ya que CountingSort no compara entonces
lo mismo la ordenacion que ya tenga el arreglo, hace todas las operaciones de igual manera, solo que ahor
repetidas d veces por el FOR de afuera de RadixSort.

Pontificia Universidad Catdlica de Chile

Facultad de Ingenieria

Departamento de Ciencias De La Computacién



1. for (i=1; i<KTAM; i++)

2. for j=0 ; j)<TAM - 1; j++)

3. if (lista[j] > lista[j+1])

4. temp = listalj];

5. lista[j] = lista[j+1];

6. lista[j+1] = temp;

1. for (i=0; i<TAM — 1; i++)

2. pos_men = Menor(lista, TAM, i);
3. temp = listal[i];

4. lista][i] = lista [pos_men];

5. lista [pos_men] = temp;

1. for (i=1; i<KTAM; i++)

2. temp = listal[i];

3.j=i-1;

4. while ( (lista[j] > temp) && (j >=0))
5. lista[j+1] = lista][j];

6. j—;

\‘

. lista[j+1] = temp;

Partition (A, p, 1) :

X=A[pl;i=p-1;j=r+l
Quicksort (A, p, 1) :
while (1)
if(p<r)
do j = j—1 while (A[j] > x)
g = Partition(A, p, r)
do i = i+1 while (A[i] < x)
Quicksort(A, p, q)
if (i <j)

intercambie (A[i], A[j])

Quicksort(A, g+1, r)

else return |




void shellsort (int &[], int n)
int x,i,j,inc,s;

for(s=1; s <t; s++)

inc = h[s];

for(i=inc+1; i < n; i++)

x = afi];

j = i-inc;

while(j > 0 && alj] > x)

afj+h] = a[j];
j=i-h;
afj+h] = x;

void mergesort(int[] a, int lo, int hi)
if (lo<hi)

m = (lo + hi) / 2;

mergesort (a, lo, m);
mergesort (a, m+1, hi);

merge (a, lo, hi);

void merge(int[] a, int lo, int hi)
inti, j, kK, m, n=hi-lo+1;

int[] b=new int[n];

k=0;

m=(lo+hi)/2;

for (i=lo; i<=m; i++)
blk++]=al[i];

for (j=hi; j>=m+1; j—-)

blk++]=all];



i=0; j=n-1; k=lo;

while (i<=j)

if (b[i]<=bj])
afk++]=b[i++];

else

afk++]=b[]-—];
HeapSort(A)

Build-Heap;

for i <— length[A] downto 2
do exchange A[1] <—> A[i]

heap-size[A] <- heap-size[A]-1 Heapify(A, 1)

Heapify(A, i)
I'=L(i); r = R()

if (1< A && A[l] > Ali])
k=1

else k=i

if (r < A && Alr] > A[K])
k=r

if (k <> i)

intercambie A[i] « A[K]

Heapify(A, k)

Build-Heap(A) :
A=pA

for (i = floor(nA/2) downto 1)



Heapify(A, i)
CountingSort(A,B,k)

for (i=1; i< = k; i++)

Cli]=0;

for (j=1; j< = Largo(A); j++)
CIALII++;

for (i=2; i< = k; i++)
C[i]+=CI[i-1];

for (j=Largo (A); j > 0; j—) {
BIC[A[II = All;

CIAL ==

RadixSort( A[], n, d)

for (inti=1;i<=d;i--)

A = CountingSort(A, n, 10, i);
Fin RadixSort

CountingSort( A[ ], n, k, digit)
C[]=0

for (j=1;j<=n;j++)

C[ Al ] ][digit] ] ++

for (i=2;j<=k; j++)
Cli]+=C[i-1]
for(j=n;j>=1;j-—)

e = A[] ][digit]
B[Cle]]=Al]j]

Cle]--

return B

Fin CountingSort

10



