LABORATORIO DE SISTEMAS TELEMATICOS

PRACTICA PREVIA

#include<stdio.h>#include<fcntl.n>#define PERMS 0644#define BUFSZ 512
main(argc,argv){

int argc;char *argv([];int fildes1,fildes2,n_read,n_write;char datos[BUFSZ];if (argc!=3) { printf("Error \n
Sintaxis: %s fichero_fnt fichero_des\n",

argv|[0]);

exit(1);

}

if ((fildesl=open(argv[1],0_RDONLY))==-1)
{

perror("No se pudo abrir el fichero fuente");
exit(1);

}

if ((fildes2=open(argv[2],0_CREAT|O_TRUNC|O_RDWR,PERMS))==-1)
{

perror("No se pudo abrir el fichero destino™);
exit(1);

}

do

{

if (n_read=read(fildes1,datos,BUFSZ))==-1)
{

perror("Error de lectura®);

exit(1);

}

if ((n_write=write(fildes2,datos,n_read))==-1)

{

perror("Error de escritura®);

exit(1);

}

twhile (n_read!=0);

close(fildesl);

close(fildes2);

}

Cuestiones:

 Plantearia problemas el hecho de abrir el fichero fuente en modo lectura escritura. ¢ Qué

modificaciones habria que realizar en el programa para abrir el fichero origen en modo lectura
escritura?

En principio no representaria ningun problema. Deberia sustituirse la linea:

if ((fildesl=open(argv[1],0_RDONLY))==-1)

por —> if ((fildesl=open(argv[1],0_RDWR))==-1)

* Los flags O_TRUNC y O_CREAT empalados en el programa para qué se emplean. Indique donde ¢
encuentra definido el valor de estas constantes.

O_CREAT: Si el fichero que queremos abrir ya existe, este indicador no tiene efecto, excepto en lo que
indicara para el indicador O_EXCL. El fichero es creado en caso de gue no exista y se creara con los permi
indicados en el parametro mode.

O_TRUC: Si el fichero existe, trunca su longitud a cero bytes, incluso si el fichero se abre para leer.

Estas opciones estan incluidas en una mascara de bits que le indica al nicleo el modo en que queremos qt
abra el fichero.

» En la escritura en el fichero destino, se manda escribir n_read datos, se podria sustituir n_read por |
constante BUBSZ.

No, porque pueda ocurrir el caso en que se lean menos bytes que BUFSZ, por ejemplo al final del fichero.
» Como podriamos obtener el codigo fuente en ensamblador del programa copiar.

Anadiendo la opcién “-S' al compilador, el cual funciona ahora como un ensamblador, dando a la salida un
fichero ".s', que contiene el cédigo fuente en ensamblador.

PRACTICA 1

/*_ — — — — — — — — — — —_

El programa funciona como la orden 'ls' del shell de UNIX de forma reducida. Parametros en la linea de
comandos:

* directorio: se puede especificar el directorio del que se quiere listar la informacion.
* —|: muestra informacién adicional.

* —i: muestra el i_node.

#include <stdio.h>

#include <fcntl.h>

#include <unistd.h>

#include <dirent.h>

#include <pwd.h>

#include <grp.h>

#include <sys/types.h>

#include <sys/stat.h>

#define S| 1 /* Constantes booleanas */

#define NO O

typedef int BOOL; /* Definicion del tipo BOOL */

char permisos []={'x','w",'r'};/*Definicion de los caracte-
res de permisos */

/* Funcién que mostrara los datos */int mostrar(struct stat *datos, char *nombre, BOOL sil, BOOL
sii);/* Programa principal */

main (int argc, char *argv([])

{

DIR *directorio; /*Puntero a la ruta del directorio a abrir*/
BOOL opl=NO; /* Informacion sobre si se opciono '-I' */
BOOL opi=NO; /* Informacion sobre si se opciono '-i' */
int con; /* Contador para extraer los parametros */

int opdir=0; /*Posicién del nombre del directorio en la LC*/
struct dirent *entra_dir; /* Entrada del directorio leido */
struct stat datos_fic; /* Informacion sobre el estado del
fichero */

/* Comprobacion de la linea de comandos */

if (argc>4)

{

printf("Error \n Sintaxis: %s [Directorio] [-1] [-1]",

argv|[0]);

exit(-1);

}

/* Miro las opciones introducidas en la linea de comandos */
for (con=1;con<argc;con++)

{

if (strcmp(argv]con],"-I")==0) opl=SI;

else if (strcmp(argv[con],"-i")==0) opi=SI,

else opdir=con;

}

/* Si se ha especificado el directorio se abre, sino, se abre el directorio actual */
if (opdir)

{

if ((directorio=opendir(argv[opdir]))==NULL)
{

printf("Error en la apertura del directorio %s",
argv[opdir));

exit(-1);

}

}

else

{

if ((directorio=opendir("."))==NULL)

{

printf ("Error en la apertura del directorio actual");
exit(-1);

}

}

[* Extraer todas las entradas del directorio */

while ((entra_dir=readdir(directorio))!=NULL)

{

if (stat(entra_dir->d_name, &datos_fic)==—1)

{

printf ("Error en la lectura de datos del fichero %s",
entra_dir->d_name);

exit(-1);

}

/* Muestra de los datos de los ficheros */

if (mostrar(&datos_fic, entra_dir—->d_name, opl, opi)==-1)

{

printf ("Error en la muestra de los datos");
exit(-1);

}

}

printf("\n"); /* Deja una linea en blanco */
[* Cerramos el directorio */
if(closedir(directorio)==-1)

{

printf ("Error al cerrar el directorio”);
exit(-1);

}

}

/*_ — — — — — — — — — — —

Funcién de muestra de datos. Parametros:

* datos: puntero a la estructura que contiene los datos de la entrada del directorio.
* nombre: nombre de la entrada del directorio explorado.

* sil: vale Sl si en la linea de comandos esta la opcién '-I'

* sii; vale Sl si en la linea de comandos esta la opcién '-i'

int mostrar (struct stat *datos, char *nombre, BOOL sil, BOOL
sii)

{

struct passwd *propietario; /* Contiene el nombre del
propietario */

struct group *grupo; /* Contiene el nombre del grupo */

inti; /* Entero para indexar */

/* Miro que informacién tengo que presentar, segun los comandos */
if (sii==SI) printf ("%7d ", datos—>st_ino);
if (sil==NO) printf ("%-12s", nombre);

else

{

/* Obtencion del tipo de fichero */
switch(datos—>st_mode & S_IFMT)

{

case S_IFREG: /* Ordinario */

printf ("-");

break;

case S_IFDIR: /* Directorio */

printf ("d");

break;

case S_IFCHR: /* Especial modo caracter */
printf ("c");

break;

case S_IFBLK: /* Especial modo bloque */
printf ("b™);

break;

case S_IFIFO: /* FIFO (tuberia) */

printf ("p");

break;

default:

printf(" ");

}

[* Extraccion de los permisos */

for (i=0;i<9;i++)

if (datos—>st_mode & (0400 >>i))

printf("%c",permisos [(8-1)%3));

else

printf("-");

[* Extraccion del numero de enlaces */

printf("%4d ",datos—>st_nlink);

/* Obtencion del nombre del propietario */

if ((propietario=getpwuid(datos—>st_uid))==NULL)
return(-1);

/* Obtencion del nombre del grupo */

if ((grupo=getgrgid(datos—>st_gid))==NULL)

return(-1);

/* Impresion de los nombres de propietario y grupo */
printf("%s\t%s ",propietario—>pw_hame, grupo—>gr_name);
/* Impresién de la longitud de la entrada */

printf("%212d ",datos—>st_size);

/* Obtencion de los tiempos asociados */

[* printf("%s", asctime(localtime (&datos—>st_atime)));*/
[* printf("%s", asctime(localtime (&datos—>st_mtime)));*/
[* printf("%s", asctime(localtime (&datos—>st_ctime)));*/
/* Impresion del nombre de la entrada */

printf("%s\n",nombre);

}

return(0);
}
Cuestiones:
 Desarrolle una funcién uid2nombre() a la cual se le pase como argumento el uid de un usuario y not
devuelva el nombre del usuario si se ejecuta de forma correcta o —1 si se produce algun fallo (p.e. e

usuario no existe).

Primero mostraremos un programa que no utiliza llamadas para obtener el nombre.

[r————————= ————————= ————————= -——————————-Esta es la funcion
uid2nombre() a la cual se le pasa como argumento el uid de un usuario y nos devuelve el nombre de usuar
en caso de existir o —1 si se produce algun error (p.e. el usuario no existe).

—_ — — — — — — — — — __*/

#include <stdio.h>

#include <fcntl.h>

#include <sys/types.h>

#include <sys/stat.h>

main (int argc, char *argv[])

{

int nbytes,fd_origen; /* Valores de referencia del fichero */
char carac; /* Caréacter leido del fichero */

char nombre[16]; /* Tabla donde se guarda el nombre del
usuario*/

char UID[16]; /* Tabla donde se guarda el uid del usuario */
int i=0; /* Variable que indexa las tablas */

int campo=1; /* Variable que indica el campo examinado */
int num=0; /* Variable que indica la longitud del nombre */
int lon=0; /* Variable que indica la longitud del uid */

/* Comprobacion de la linea de comandos */

if (argc!=2)

{

printf("\nError ———> Sintaxis: %s UID\n\n", argv[0]);

exit(—1);

}

/* Abrimos el fichero '‘passwd’ en modo lectura */

if ((fd_origen=open("/etc/passwd",O0_RDONLY))==-1)

{

printf("No se pudo abrir el fichero /etc/passwd™);

exit(—1);

}

I* Leemos del fichero caracter a caracter hasta el final del fichero */
while ((nbytes=read(fd_origen,&carac,1))>0)

{

[* procesamos linea por linea */

if (carac!="\n")

[* procesamos campo por campo */

if (carac!=""

switch(campo)

{

case 1: /*si estamos en el primer campo,*/

nombre[i]=carac; /* almacenamos el nhombre */

i++;
num=i;

break;

case 3: /* si estamos en el tercer campo,*/

UID[i]=carac; /* almacenamos el uid */

i++;
lon=i;

break;

}

/* Cambiamos de campo */
else

{

campo++;

i=0;

}

* Fin de linea */

else

{

/* Comprobamos si el uid del usuario procesado es el pedido, y si lo es, lo mostramos por pantalla 'y
terminamos la busqueda*/

UID[lon]="0";

if (strcmp(UID,argv[1])==0)

{

printf("\nNOMBRE DEL USUARIO: "),

for (i=0;i<num;i++)

printf("%c",nombre[i]);

printf("\n\n");

return(0);

}

/* Si no lo es, pasamos a la linea siguiente */

else

{

11

}

/* No ha aparecido ningln usuario con el uid especificado */
printf("\n\nNO EXITE ESE USUARIO\n\n");
return(-1);

}

Este segundo programa, es mucho mas sencillo, y realiza la misma funcion que el anterior, pero con una
llamada mediante la funcién getpwuid, la cual obtiene el nombre del usuario automaticamente.

#include <stdio.h>#include <sys/types.h>#include <pwd.h>
main (int argc, char *argv[]){ struct passwd *propietario;
int x;

x=atoi(argv[1]);

if ((propietario=getpwuid(x))==NULL)

{

printf("\n\nEL USUARIO NO EXISTE\n\n");

return(=1);

}

printf("\n\n%s\n\n",propietario—>pw_name);

return(0);

}

« Desarrolle una funcién gid2grupo() a la cual se le pase como argumento el gid de un usuario y nos
devuelva el nombre del grupo si se ejecuta de forma correcta o —1 si se produce algun fallo (p.e. el
grupo no existe).

#include <stdio.h>#include <sys/types.h>#include <grp.h>main (int argc, char *argv[])

{

12

struct group *grupo;

int x;

printf("\nINTRODUCE EL GID: ");
scanf("%d",&x);

if ((grupo=getgrgid(x))==NULL)

{

printf("\n\nEL GRUPO NO EXISTE\n\n");
return(-1);

}
printf("\n\n%s\n\n",grupo—>gr_name);
return(0);

}

» ¢, Qué ocurre si dentro de un subdirectorio donde se realiza la busqueda existe un enlace blando (so
link) del directorio consigo mismo?

Ocurre que nos metemos en un bucle infinito donde se repite el listado del directorio continuamente.

» ¢, Qué madificaciones necesitaria el programa para que nos devolviese el total de ficheros cuyo
propietario es el especificado como argumento del programa?

Simplemente cada vez que mostraramos la informacion del fichero, comparariamos el propietario con el

argumento dado, incrementando un contador en caso de coincidir. Al final, mostrariamos el contador por
pantalla.

PRACTICA 2

e e —————-—————-PRACTICA 2
PRACTICA 2 PRACTICA 2 PRACTICA 2 PRACTICA 2

Este programa esta compuesto de tres procesos:

* P1 realiza la lectura de un fichero introducido en la linea de comandos, y lo transmite caracter a caracter ¢
través de una tuberia.

* P2 recoge la informacion transmitida por P1, selecciona las mayusculas, las saca por pantalla y las transn
por otra tuberia.

13

* P3 recoge la informacion transmitida por P2, cuenta el numero de caracteres recogidos y los muestra por
pantalla

—_ — — — — — — — — — __*/

#include <stdio.h>

#include <fcntl.h>

#include <sys/types.h>

#include <sys/stat.h>

main(int argc, char *argv[])

{

char carac; /* caracter del fichero leido */

char c_rec; /* caracter recibido */

char mayus_rec; /* mayuscula recibida */

char FIN="\0'; /* caracter de fin de transmision */

int nbytes; /* cantidad de datos leidos del fichero */
int fd_origen; /* identificador del fichero leido */

int tuberial[2]; /* tuberia de transmisién de datos de
PlaP2*

int tuberia2[2]; /* tuberia de transmisién de datos de
P2 aP3*/

int pid1,pid2; /*identificadores de los procesos creados*/
int contador=0; /* numero de mayusculas */

/* Comprobacion de la linea de comandos */

if (argc!=2)

{

printf("Error\n Sintaxis: %s fichero\n", argv[0]);
exit(-1);

}

14

/* Abrimos la primera tuberia */

if (pipe (tuberial)==-1)

{

perror("Error al abrir la tuberia™);
exit(-1);

}

/* Abrimos el primer proceso hijo */

if ((pid1=fork())==-1)

{

perror("Error al abrir el proceso hijo");
exit(-1);

}

else if (pid1==0)

{

[* Este el primer proceso hijo */

/* Abrimos la segunda tuberia */

if (pipe (tuberia2)==-1)

{

perror("Error al abrir la tuberia™);
exit(-1);

}

/* Abrimos el segundo proceso hijo */
if ((pid2=fork())==-1)

{

perror("Error al abrir el proceso hijo");

exit(-1);

15

}

else if (pid2==0)

{

/* P3. El segundo proceso hijo */

/* Leemos de la tuberia los datos transmitidos por P2 hasta el fin de transmision. Sacamos por pantalla los
caracteres, y los contamos */

printf("\nMAYUSCULAS RECIBIDAS: "),
while(read(tuberia2[0],&mayus_rec,1)>0 &&
(mayus_rec!=FIN))

{

printf("%c",mayus_rec);

contador++;

}

[* Sacamos por pantalla el numero de mayusculas */
printf("\n\nNUMERO DE MAYUSCULAS RECIBIDAS: %d\n\n",
contador);

[* Cerramos las tuberias */

close (tuberial[0]);

close (tuberial[l]);

close (tuberia2[0]);

close (tuberia2[1]);

exit(0);

}

else

{

/* P2. El segundo proceso padre */

/* Leemos de la tuberia los datos transmitidos por P1 hasta el fin de transmision. A continuaciéon

16

seleccionamos las mayusculas, y estas las mostramos en pantalla y las transmitimos a P3 */
printf("\mM\nMAYUSCULAS ENVIADAS: ");

while (read(tuberial[0],&c_rec,1)>0 && (c_rec!=FIN))
{

if ((c_rec>="A"&&(c_rec<='Z"))

{

printf("%c",c_rec);

if (write (tuberia2[1],&c_rec,1)<0)

printf("Error al escribir en la tuberia21");

}

}

/* Mandamos por la tuberia el fin de transmision */
if (write (tuberia2[1],&FIN,1)<0)
printf("Error al escribir en la tuberia22");
[* Cerramos las tuberias */

close (tuberial[0]);

close (tuberial[l]);

close (tuberia2[0]);

close (tuberia2[1]);

exit(0);

}

}

else

{

/* P1. Este es el primer proceso padre */

/*Abrimos el fichero introducido en la linea de comandos*/

if ((fd_origen=open(argv[1],0_RDONLY))==-1)
{

printf("No se pudo abrir el fichero %s",argv[1]);
exit(-1);

}

/* Leemos el fichero y lo escribimos en la tuberial caracter a caracter */

while ((nbytes=read(fd_origen,&carac,1))>0)

{

if (write (tuberial[l],&carac,1)<0)

printf("error en la transmisién por la tuberiall\n");
}

/* Mandamos por la tuberia el fin de transmision */
if (write (tuberial[l],&FIN,1)<0)

printf("error en la transmisién por la tuberial2\n");
/* Cerramos el fichero y las tuberias */

close (fd_origen);

close (tuberial[0]);

close (tuberial[l]);

exit(0);

}

}

Cuestiones:

» ¢ Cuando terminan de ejecutarse P1, P2y P3?

P1: Al terminar de escribir en la tuberia el fin de mensaje.

P2: Al terminar de escribir en la tuberia el fin de mensaje.

P3: Al terminar de escribir las mayusculas.

18

¢ Cuando un proceso lee de una tuberia y nadie ha escrito en ella, qué ocurre?
Ocurre que el proceso que pretende leer se queda dormido esperando leer algo.
¢, Puede un proceso quedarse bloqueado indefinidamente? ¢ Como se evita este problema?

Puede ocurrir en el caso anterior, y esto se soluciona (como hemos hecho en la practica) mandando un fin
transmisiéon para que el receptor no se quede colgado esperando mas caracteres.

También se debe hacer una correcta programacién para que no haya problemas de lectura—escritura en la
programacion con tuberias.

PRACTICA 3

e e ~—————————-— PRACTICA 3
PRACTICA 3 PRACTICA 3 PRACTICA 3 PRACTICA

B e ~-—-—--—-—PROCESO

ESCRITOR: Este proceso guarda los caracteres introducidos por el usuario en una zona de memaoria
compartida con el proceso lector, valiendose para ello de los mecanismos IPC (llaves, semaforos, memoria
compartida).

—_ — — — — — — — — — __*/

#include <stdio.h>

#include <fcntl.h>

#include <sys/ipc.h>

#include <sys/types.h>

#include <sys/shm.h>

#include <sys/sem.h>

#include <sys/stat.h>

#define SMUTEX 0 /* Semaforo de exclusi¢n mutua */

#define SOCUP 1 /* Seméaforo que indica las posiciones

ocupadas */#define SVACIO 2/*Seméaforo que indica las posiciones vacias*/#define TAM 512 /* Tamario de
la zona de memoria compartida */main(int argc, char *argv[]){ key_t llave; /* Llave de identificaci¢n de los

mecanismos

IPC */ int shmid; /* Identifica la zona de memoria compartida */ int semid; /* Identificador del semaforo */
int idfifo; /* Identificador de la tuberia */ char *tabla; /* Tabla donde se almacenan los caracteres

escritos */ struct sembuf operacion[3]; /* Estructura de operaciones

19

sobre seméaforos */ int i=0; /* Variable que indexa la tabla */ char dato; /* Variable que almacena el dato leid
*/

[* Creamos una llave */

if ((Ilave=ftok("out.out",'0"))==(key_t)-1)

{

printf("\nError al crear la llave o falta fichero

‘out.out' \n"); exit(-=1); } /* Creacion de la zona de memoria compartida */
if ((shmid=shmget(llave, TAM,IPC_CREAT|0600))==-1)
{

printf("Error al crear la memoria compartida\n™);
exit(-1);

}

/* Atarnos al segmento de memoria compartida */
tabla=shmat(shmid,0,0);

* Creacion de los seméforos e inicializacion de los mismos */
if ((semid=semget(llave,3,IPC_CREAT|0600))==-1)

{

printf("Error al crear los semaforos\n®);

exit(-1);

}

if (semctl(semid,SMUTEX,SETVAL,1))

{

printf("Error al inicializar el semaforo\n");

exit(-1);

}

if (semctl(semid,SOCUP,SETVAL,0))

{

20

printf("Error al inicializar el semaforo\n");
exit(-1);

}

if (semctl(semid,SVACIO,SETVAL,TAM))
{

printf("Error al inicializar el semaforo\n");
exit(-1);

}

/* Abrimos la tuberia en modo escritura y escribimos la llave en ella */

if ((idfifo=open("tuberia”,O_WRONLY))==-1)
{

printf("\nError al abrir la tuberia\n™);

exit(-1);

}

if ((write (idfifo,&llave,sizeof(key_t)))==-1)

{

printf("\nError al escribir en la tuberia\n");
exit(-1);

}

printf("\n———- INTRODUCE EL TEXTO HASTA'Q' —————-— \n");
do

{

[* Leemos el dato */

dato=getchar();

I* P sobre los seméforos */

operacion[0].sem_num=SVACIO;

21

operacion[0].sem_op=-1,
operacion[0].sem_flg=0;
operacion[l].sem_num=SMUTEX;
operacion[l].sem_op=-1,;
semop(semid,operacion,2);

[* Escribimos en la zona de memorja compartida */
tabla[i]=dato;

I* V sobre los seméforos */
operacion[0].sem_num=SMUTEX;
operacion[0].sem_op=1;
operacion[l].sem_num=SOCUP;
operacion[l].sem_op=1;
semop(semid,operacion,2);

/* Al llegar al final reinicamos */
(I<TAM)?(i++):(i=0);

} while ((dato!='q")&&(dato!="Q"));
[* Borrado de los semaforos */
shmctl(shmid,IPC_RMID,0);

/* Desatado de la zona de memoria compartida */
shmdt(tabla);

* Cierre de la tuberia utilizada */
close(idfifo);

}

/*_ — — — —_ —_ — —

PROCESO LECTOR: Este proceso realiza la conversién a mayusculas y mostrado en pantalla de los
caracteres introducidos anteriormente por el proceso escritor en la zona de memoria compartida.

— —_ __*/

#include <stdio.h>

#include <fcntl.h>

#include <sys/ipc.h>

#include <sys/types.h>

#include <sys/shm.h>

#include <sys/sem.h>

#include <sys/stat.h>

#define SMUTEX 0 /* Semaforo de exclusion mutua */

#define SLLENO 1 /* Semaforo que indica las posiciones
ocupadas */#define SVACIO 2/*Seméaforo que indica las posiciones vacias*/
#define TAM 512 /* Tamafio de la zona de memoria compartida */
main(int argc, char *argv[])

{

key_t llave; /* Llave de identificacion de los mecanismos

IPC */ int shmid; /*Identificador de la zona de memoria

compartida */ int semid; /* Identificador del seméaforo */ int idfifo; /* Identificador de la tuberia */ char
tabla; / Tabla donde se almacenan los caracteres

escritos */

char dato; /* Variable que almacena el dato que hay

en memoria */ struct sembuf operacion[3]; /* Estructura de operaciones
sobre seméaforos */ int i=0; /* Variable que indexa la tabla */

/* Abrimos la tuberia en modo lectura y leemos la llave */

if ((idfifo=open("tuberia",O_RDONLY))==-1)

{

23

printf("Error al abrir la tuberia\n™);

exit(-1);

}

if ((read(idfifo,&Ilave,sizeof(key_t)))==-1)

{

printf("\nError al leer de la tuberia\n™);

exit(-1);

}

[* Creacion de la zona de memoria compartida */
if ((shmid=shmget(llave, TAM,IPC_CREAT|0600))==-1)
{

printf("Error al crear la memoria compartida");
exit(-1);

}

[* Atarnos al segmento de memoria compartida */
tabla=shmat(shmid,0,0);

* Creacion del semaforo */

if ((semid=semget(llave,3,IPC_CREAT|0600))==-1)
{

printf("Error al crear los semaforos");

exit(-1);

}

do

{

I* P sobre los seméforos */

operacion[0].sem_nhum=SLLENO;

operacion[0].sem_op=-1,
operacion[0].sem_flg=0;
operacion[l].sem_num=SMUTEX;
operacion[l].sem_op=-1,;
semop(semid,operacion,2);

/* Leemos el dato de la memoria */
dato=tablali];

/*V de los semaforos */
operacion[0].sem_num=SMUTEX;
operacion[0].sem_op=1;
operacion[l].sem_num=SVACIO;
operacion[l].sem_op=1;
semop(semid,operacion,2);

/* Al llegar al final reinicamos */
(I<TAM)?(i++):(i=0);

/* Conversién a mayusculas y mostrado en pantalla */
if ((dato>="a")&&(dato<='z")) dato=dato—-32;
if ((dato!='q")&&(dato!="Q")) printf("%c",dato);
}while ((dato!='q")&&(dato!="Q"));
printf("\n\n");

/* Borrado de los semaforos */
shmctl(shmid,IPC_RMID,0);

/* Desatado de la zona de memoria compartida */
shmdt(tabla);

[* Cierre de la tuberia utilizada */

close(idfifo);

25

}

Cuestiones:

» En lugar de utilizar un seméforo para controlar el acceso al &rea compartida, describir un método
usando el canal, para que el lector sepa en gué momento puede acceder a la memoria.

Podriamos, simplemente, mandar la llave por el canal una vez que el proceso escritor a finalizado de escrik
de este modo, el proceso lector comenzaria a ejecutarse al recibir la llave, pues espera a que llegue siempi

» Por qué es necesario y suficiente que el lector conozca la llave para poder acceder al area de memc
compartida.

Porque una llave siempre tiene los mismos atributos para cualquier proceso que la maneje, esto es, misma
memaria compartida, mismos semaforos, etc.

 ¢Funcionarian correctamente ambos procesos si el escritor en vez de pasar la llave, enviara a travé
del canal la direccion del segmento de memoria compartida? ¢ Por qué?

No, porgue para acceder a la memoria compartida es necesario hacerlos a través de la funcion “'shmget' y ¢

necesita la llave, no basta simplemente conocer el identificador de la zona de memoria compartida. Adema:
no compartirian los semaforos.

PRACTICA 4

e e ———————————- PRACTICA 4
PRACTICA 4 PRACTICA 4 PRACTICA 4 PRACTICA 4

PRODUCTOR-CONSUMIDOR:EI productor recibir datos nEmericos desde el teclado que ira depositando
en un buffer. El proceso consumidor los recogera del buffer y realizara la suma de dos en dos, almacenand
resultado en el fichero 'suma.out'.

—_ — — — — — — — — — __*/

#include <pthread.h>

#include <stdio.h>

#include <fcntl.h>

#define LONG 16 /* Longitud del buffer */
typedef struct

{

int cantidad; /* Indica la cantidad de datos metidos */

26

int inforfLONG]; /* Contiene los numeros introducidos */
}t_buffer;

t_buffer buffer;

pthread_mutex_t semmutex, semproductor, semconsumidor;

pthread_mutexattr_t semmutexattr, semproductorattr,
semconsumidorattr;

void *productor(void *arg)

{

int dato; /* Numero leido */

int i=0; /* Indexa el buffer */

printf("\nintroduce los numeros a sumar. Para finalizar
introduce —-1\n");

do

{

scanf("%d",&dato); /* leo un numero */
pthread_mutex_lock(&semmutex); /* wait del semaforo */
if(buffer.cantidad<LONG) /* para no sobreescribir */

{

buffer.infor[i]=dato; /*guardo numero en buffer */
buffer.cantidad++;

i=(i+1)%LONG,; /* Para que en 16 vuelva a 0 */

}

else dato=-1; /* nos salimos del proceso */
pthread_mutex_unlock(&semmutex);
}while(dato!=-1);

[* avisar al principal de que ha terminado el productor */

27

pthread_mutex_unlock(&semproductor);

}

void *consumidor(void *arg)

{

int numl,num2; /* Guardan los numeros a sumar */

int proces=1; /* Indica si sigo procesando los numeros */
int i=0; /* Indexa el buffer */

int fid; /* Identificador del fichero */

char cadena[256]; /* Almacena los caracteres de la suma */

if((fid=open("suma.out",0_CREAT|O_TRUNC|O_RDWR,0666))==-1)

{

perror("No se pudo abrir el fichero");
exit(-1);

}

do

{

pthread_mutex_lock(&semmutex);
switch(buffer.cantidad) /* Si hay datos para leer */
{

case 0:

break;

case 1:

if((buffer.infor[i])==-1) proces=0;
break;

default:

numl=buffer.inforli];

28

i=(i+1)%LONG:;

num2=Dbuffer.inforli];

i=(i+1)%LONG:;

buffer.cantidad—=2;

if(num1l==-1 || num2 ==-1) proces=0;

else proces=2,;

}

pthread_mutex_unlock(&semmutex);

if(proces == 2) /* Tengo dos numeros a procesar */

{

proces=1; /* Sige en el bucle pero no guarda */
/*Almacenamos el resultado en cadena y lo guardamos?*/
sprintf(cadena,"\t %-5d + %-5d = %d\n", num1, num2,
numl+numa2);

write(fid,cadena,strlen(cadena));

}

twhile(proces);

close(fid);

[* avisar al principal de que ha terminado el consumidor */
pthread_mutex_unlock(&semconsumidor);

}

main()

{

pthread_t thl,th2;

pthread_attr_t attr;

buffer.cantidad=0;

29

/* Creacion e inicializacion de los semaforos */
pthread_mutexattr_create(&semmutexattr);
pthread_mutexattr_create(&semproductorattr);
pthread_mutexattr_create(&semconsumidorattr);

if (pthread_mutex_init(&semmutex,semmutexattr)==-1 ||
pthread_mutex_init(&semproductor,semproductorattr)==-1 ||
pthread_mutex_init(&semconsumidor,semconsumidorattr)==-1)
{

perror("Error al inicializar los semaforos");

exit(-1);

}

/* Hacemos un wait de los semaforos de productor y consumidor */
pthread_mutex_lock(&semproductor);
pthread_mutex_lock(&semconsumidor);

/* Creacion de los atributos de los hilos */

if (pthread_attr_create(&attr) == -1)

{

perror("Error al crear los attributos de los hilos");

exit(-1);

}

/* Creacion de los hilos */

if (pthread_create(&th1,attr,productor,NULL) == -1 ||
pthread_create(&th2,attr,consumidor,NULL) == -1)

{

perror("Error al crear los hilos");

exit(-1);

30

}

/* Hacemos un wait de los semaforos de productor y consumidor para esperar a que terminen los dos proce
*/

pthread_mutex_lock(&semproductor);
pthread_mutex_lock(&semconsumidor);
printf("\nResultado:\n");

system("cat suma.out");

exit(0);

}

Cuestiones:

» Compile el programa de ejemplo (hilo.c) y compruebe los resultado de su ejecucién. ¢ Cuantos hilos
llegan a estar activos simultdaneamente?

Tres, el hilo principal y dos secundarios.
» En el ejemplo sincro.c, con que valor se inicializan los semaforos? Compruebe si los semaforos
pueden tomar valores positivos superiores a la unidad. Muestre un programa de ejemplo

(comprueba.c) que verifique si lo anterior es 0 no cierto.

Se inicializan siempre a uno.

/*_ — — — — — — — — — — —

PROCESO COMPROBACION: Este proceso comprueba los posibles valores que pueden tomar los
semaforos.

—_ — — — — — — — — — __*/

#include <pthread.h>

#include <stdio.h>

pthread_mutex_t semaforol,semaforoz;

pthread_mutexattr_t semaforoattrl,semaforoattr2;

/* En este caso es para ver el caso de que tomen valores negativos */

void *casol (void *arg)

31

{

printf("Estamos en el primer caso:\n");

printf("Inicialmente el semaforol = 1 \n");
pthread_mutex_lock(&semaforol);

printf("wait del semaforol\n");

printf("el semaforol pasa a valer 0 \n\n");
pthread_mutex_lock(&semaforol);

printf("wait semaforo 1\n");

printf("El semaforol vale -1 Y ESTO NO FUNCIONA \n");
}

/* En este caso es para ver el caso de que tomen valores positivos */
void *caso2 (void *arg)

{

printf("Estamos en el segundo caso:\n");
printf("Inicialmente el semaforo2 = 1 \n");
pthread_mutex_unlock(&semaforo?2);

printf("signal del semaforo2 => semaforo2 = 2\n");
pthread_mutex_unlock(&semaforo?2);

printf("signal del semaforo2 => semaforo2 = 3\n");
pthread_mutex_lock(&semaforo2);

printf("wait semaforo 2 => semaforo2 = 2 \n");

printf("si no hay bloqueo => TOMAN VALORES SUPERIORES A LA
UNIDAD \n\n");

}

main()

32

pthread_t thl,th2;

pthread_attr_t attr;
pthread_mutexattr_create(&semaforoattrl);
pthread_mutexattr_create(&semaforoattr2);

if(pthread_mutex_init(&semaforol,semaforoattrl) == -1)
{

perror("Error en la creacion del semaforo 1");
exit(1);

}

if(pthread_mutex_init(&semaforo2,semaforoattr2) == -1)
{

perror("Error en la creacion del semaforo 2");
exit(1);

}

if(pthread_attr_create(&attr) == -1)

{

perror("Error en la creacion de los atributos de los
hilos™);

exit(1);

}

if(pthread_create(&th1,attr,casol,NULL) == -1)
{

perror("Error en la creacion del hilo 1");

exit(1);

}

if(pthread_create(&th2,attr,caso2,NULL) == -1)

{

perror("Error en la creacion del hilo 2");

exit(1);

}

printf("El hilo principal se duerme durante 30seg\n");
sleep(30);

printf("\n Salida del hilo principal\n");

exit(0);

}

» En el programa del productor consumidor, qué ocurre si el consumidor va mas lento que el productc
Introduzca un retardo en el codigo del consumidor para comprobar qué ocurre.

Lo que ocurre es que los datos que quiera introducir el consumidor en el buffer no podran ser metidos debi
a que esta lleno.

» ¢, Qué ocurre si el productor es mas lento?

Si el productor es el mas lento, no ocurre nada, dado que no empieza a procesar hasta que no produzca lo
datos el productor.

Laboratorio de Sistemas Teleméticos Practica Previa
28

Laboratorio de Sistemas Teleméticos Practica 1
Laboratorio de Sistemas Teleméticos Practica 2
Laboratorio de Sistemas Teleméticos Practica 3

Laboratorio de Sistemas Telematicos Practica 4

34

