
CONTROL DE LA TEMPERATURA EN 1 DIPÒSIT

Gràfiques del Bescanviador de calor

Q = 12 m/s (constant)

Gràfiques del Dipòsit d'aigua

Les variables són

CP = 4180 KJ/KgK, Densitat aigua = 1000 kg/m3, Tambient = 298ºK

Cabal primari = 25 l/s, Cabal secundari = 12 l/s, constant dissipació = 7000

Volum dipòsit = 20000 l, Temperatura aigua entrada = 353ºK

El cabal és constant (després es farà per un cabal que no és constant)
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Gràfica amb un control del procés, la temperatura de consigna de 323ºK, el controlador utilitzat té la següent
expressió:

k*(Tdipòsit−Tconsigna) la k es calcula perquè el cabal de la bomba no

Tdipòsit2 ens superi els 25 l/s (màxim possible) k=35000 per temperatura inicial de 500ºK i consigna de
323ºK

El controlador d'abans només serveix per temperatures entre les temperatures ambient i a uns 420ºK
aproximadament, a més baixes hi ha un moment en què la temperatura esdevé constant i no s'aproxima a la de
consigna. Això és degut a les pròpies lleis de la termodinàmica.

2



Ara es fa la mateixa gràfica per una temperatura de consigna de 296ºK, menor que la ambiental

La k s'ha calculat aproximadament per no sobrepassar el cabal de la bomba

I és de 30600 (això s'aconsegueix amb un dàrlington) per una temperatura inicial de 500ºK.

Com es pot apreciar no s'aconsegueix una temperatura de 296ºK sinó que és d'uns 302ºK al cap d'uns 2000
increments de temps (a la taula es mostren només 400 increments de temps)

JUSTIFICACIÓ DE LES GRAFIQUES

Les gràfiques han estat obtingudes a partir de les següents taules de valors de l'excel: les dades són les
següents...

Constants i dades de partida:

Densitat de l'aigua (suposada constant) = 1000 kg/m3

Calor específic aigua (suposat constant) = 4180 KJ/Kg°K

Temperatura ambient (T3) = 298°K (25°C)

Temperatura circuit primari bescanviador (T4) = 353°K (80°C)

Cabal del circuit primari bescanviador (Q3) = 25 l/s

Cabal del circuit secundari bescanviador (Q4) = 12 l/s

Constant de dissipació k = 7000 W/K

Volum del dipòsit = 20000 litres
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BESCANVIADOR DE CALOR

L'equació que regeix el bescanviador de calor és:

W3 + W4 = W1 + W2

Q3(T3−T2) = Q4(T2−T4) d'on s'ha d'aïllar T2 (Temperatura entrada)

DIPOSIT

L'equació que regeix la temperatura de sortida és:

�cV(dT4/dt) = �cQ2T2 − �cQ2T4 − k(T4−Ta)

llavors canviant la derivada per T(t+(t1−t0)) = T(t) + (t1−t0)*dT/dt

Les taules que han sortit, per 100 increments de temps de 3 unitats són:

La temperatura de consigna en aquest cas es de 333°K

Resta es el cabal que s'introdueix en la realimentació

t i Q4 T2 T4 (K) Resta

*

3 1 25 325,5 500 24,78

6 2 24,78 325,378 498,702 24,7265

9 3 24,73 325,349 496,773 24,6453

12 4 24,65 325,304 494,237 24,5355

15 5 24,54 325,242 491,127 24,396

18 6 24,4 325,164 487,483 24,2253

21 7 24,23 325,067 483,351 24,0223

24 8 24,02 324,952 478,785 23,7855

27 9 23,79 324,815 473,84 23,5137

30 10 23,51 324,658 468,578 23,206

33 11 23,21 324,477 463,06 22,8616

36 12 22,86 324,271 457,348 22,4805

39 13 22,48 324,041 451,504 22,0628

42 14 22,06 323,784 445,586 21,6095

45 15 21,61 323,5 439,649 21,1221

48 16 21,12 323,188 433,745 20,6026

51 17 20,6 322,848 427,918 20,0538

54 18 20,05 322,481 422,209 19,4788

57 19 19,48 322,086 416,65 18,8813

60 20 18,88 321,665 411,269 18,2652

63 21 18,27 321,219 406,087 17,6345

66 22 17,63 320,749 401,12 16,9935

69 23 16,99 320,257 396,379 16,3463
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72 24 16,35 319,744 391,869 15,6967

75 25 15,7 319,213 387,591 15,0486

78 26 15,05 318,667 383,546 14,4051

81 27 14,41 318,106 379,727 13,7695

84 28 13,77 317,534 376,13 13,1441

87 29 13,14 316,953 372,746 12,5314

90 30 12,53 316,364 369,566 11,9331

93 31 11,93 315,77 366,58 11,3506

96 32 11,35 315,174 363,779 10,7852

99 33 10,79 314,576 361,152 10,2377

102 34 10,24 313,979 358,688 9,70862

105 35 9,709 313,384 356,378 9,19838

108 36 9,198 312,793 354,213 8,70712

111 37 8,707 312,207 352,183 8,23485

114 38 8,235 311,628 350,278 7,78146

117 39 7,781 311,056 348,492 7,34671

120 40 7,347 310,492 346,817 6,93031

123 41 6,93 309,937 345,245 6,53187

126 42 6,532 309,393 343,769 6,15099

129 43 6,151 308,86 342,383 5,78722

132 44 5,787 308,339 341,082 5,44009

135 45 5,44 307,829 339,861 5,10911

138 46 5,109 307,333 338,714 4,7938

141 47 4,794 306,849 337,636 4,49367

144 48 4,494 306,38 336,625 4,20822

147 49 4,208 305,924 335,674 3,93697

150 50 3,937 305,483 334,783 3,67944

153 51 3,679 305,056 333,945 3,43516

156 52 3,435 304,644 333,16 3,20366

159 53 3,204 304,247 332,423 2,9845

162 54 2,985 303,866 331,732 2,77723

165 55 2,777 303,499 331,085 2,58141

168 56 2,581 303,148 330,479 2,39661

171 57 2,397 302,811 329,911 2,2224

174 58 2,222 302,49 329,38 2,05838

177 59 2,058 302,184 328,885 1,90413

180 60 1,904 301,893 328,422 1,75925

183 61 1,759 301,616 327,99 1,62335

186 62 1,623 301,354 327,587 1,49604

189 63 1,496 301,105 327,212 1,37693

192 64 1,377 300,871 326,863 1,26565

195 65 1,266 300,65 326,54 1,16183

198 66 1,162 300,443 326,239 1,06511
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201 67 1,065 300,247 325,96 0,97512

204 68 0,975 300,065 325,702 0,89153

207 69 0,892 299,894 325,464 0,81399

210 70 0,814 299,734 325,243 0,74218

213 71 0,742 299,586 325,04 0,67576

216 72 0,676 299,448 324,853 0,61443

219 73 0,614 299,319 324,68 0,55788

222 74 0,558 299,201 324,522 0,50583

225 75 0,506 299,091 324,377 0,45798

228 76 0,458 298,989 324,244 0,41406

231 77 0,414 298,896 324,122 0,37381

234 78 0,374 298,81 324,011 0,33699

237 79 0,337 298,732 323,909 0,30336

240 80 0,303 298,659 323,817 0,27267

243 81 0,273 298,593 323,733 0,24473

246 82 0,245 298,533 323,656 0,21933

249 83 0,219 298,478 323,587 0,19626

252 84 0,196 298,428 323,524 0,17535

255 85 0,175 298,383 323,468 0,15643

258 86 0,156 298,342 323,416 0,13933

261 87 0,139 298,305 323,37 0,1239

264 88 0,124 298,271 323,329 0,11

267 89 0,11 298,241 323,291 0,0975

270 90 0,097 298,214 323,258 0,08627

273 91 0,086 298,189 323,227 0,07621

276 92 0,076 298,167 323,201 0,06719

279 93 0,067 298,147 323,176 0,05914

282 94 0,059 298,13 323,155 0,05195

285 95 0,052 298,114 323,136 0,04554

288 96 0,046 298,1 323,119 0,03984

291 97 0,04 298,087 323,104 0,03477

294 98 0,035 298,076 323,09 0,03028

297 99 0,03 298,067 323,078 0,0263

300 100 0,026 298,058 323,068 0,02278

303 101 0,023 298,05 323,059 0,01967

306 102 0,02 298,043 323,05 0,01693

309 103 0,017 298,037 323,043 0,01452

Pràctica de regulació automática

Circuit electric

El circuit electric d'aquesta figura és el de la práctica:

6



ESTUDI D'UN SISTEMA REALIMENTAT

OBJECTIU• 

Els objectius de la pràctica són:

Familiaritzar−se amb el Matlab• 
Utilitzar les eines per l'anàlisis freqüencial i temporal de sistemes linials• 
Aplicar aquestes eines a l'anàlisis d'un sistema realimentat.• 

INTRODUCCIÓ TEÒRICA• 

Les característiques dinàmiques d'un sistema realimentat (anell tancat) es poden obtindre a partir de l'estudi
d'aquest sistema en anell obert
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ESTUDI PREVI• 

Repassar els següents temes:

resposta temporal• 
Funcions de Transferència de sistemes lineals• 
Llaç tancat / Llaç obert• 
Diagrames de blocs• 
Sistemes 1 entrada−1 sortida, sistemes multivariables• 
Funcions de transferència de sistemes discrets• 

Estabilitat• 
Determinants de Hurwitz• 

Aquests determinants són un mètode algebraic per determinar si un sistema és o no és estable mitjançant el
seu polinomi característic. Són la base del criteri de Routh−Hurwitz

Tabulació de Routh−Hurwitz• 

Mètode algebraic que proporciona informació sobre l'estabilitat absoluta d'un sistema linial i invariant amb el
temps que té una equació característica amb coeficients constants. El criteri proba si les arrels de l'equació
característica està en el semiplà dret s. També indica el nº d'arrels que estàn sobre l'eix jW i en el semiplà dret.
Es basa en tabular els supindexs de les potències

Criteri de Nyquist• 

Es un métode semigràfic que proveix informació sobre la diferència entre el nº de pols i zeros de la funció de
transferència en llaç tancat que estàn en el semiplà dret del pla s mediant la observació del comportament de
la gràfica de Nyquist de la funció de trasnferència en llaç tencat.

Diagrama de Bode• 

Aquest diagrama és una gràfica de la magnitud de la funció de transferència en llaç G(jW)H(jW) en dB i de la
fase G(jW)H(jW) en graus, en funció de la freqüència Wm la estabilitat del sistema en llaç tancat es pot
determinar observant el comportament d'aquestes gràfiques

Solució de les arrels del polinomi característic• 

Solucionar les arrels del polinomi característic obtenim el valor exacte d'aquestes arrels, si tenen la part real
positiva el sistema és inestable i si son totes a la part negativa real el sistema és estable. També hi ha els
marginalment estables que són els integradors

Precisió• 
resposta a un esglaó (error de posició)• 

R(t) = K*Us(t) R(S) = K/s

Kp = lím G(S)H(S) per s0 Ess = 1/1+Kp

resposta a una rampa (error de velocitat)• 

R(t) = Kt*Us(t) R(S) = K/s2

8



Kv = lím S*G(S)H(S) per s0 Ess = 1/Kv

resposta a una paràbola (error d'acceleració)• 

R(t) = Kt2*Us(t) R(S) = K/S3

Ka = lím S2*G(S)H(S) per s0 Ess = 1/Ka

REALITZACIÓ• 
MATERIAL NECESSARI• 

Matlab amb Control System Toolbox

ÚS DEL MATLAB• 

Per fer la pràctica cal saber utilitzar les principals funcions de control. Estudiarem un sistema d'exemple. La
funció de transferència a considerar serà:

H(s) = num = 2s2 + 5s +1

den s2 +2s + 3

4.2.1 STEP I IMPULSE

Resposta a un esglaó de sistemes lineals continus en el temps.

STEP(A,B,C,D,IU) dibuixa la resposta temporal del sistema lineal

x = Ax + Bu

y = Cx + Du

A un esglaó aplicat a l'entrada IU, T permet dir l'espai de temps a considerar

[Y,X] = STEP(A,B,C,D,IU,T) ó [Y.X,T] = STEP(A,B,C,D,IU) retorna

la sortida i l'estat de la resposta a les matrius Y i X respectivament

T serveix per determinar el nº de temps.

[Y,X] = STEP(NUM,DEN,T) ó [Y,X,T] = STEP(NUM,DEN) calcula la resposta

temporal de la funcio de transferència: G(S) = NUM(s)/DEN(s)

on NUM i DEN contenen els coeficient dels polinomis de s

per definir el vector de Temps ho fem de la següent manera:

t = temps inicial: increments de temps: temps final ex: t = 0:0:1:10;

4.2.2 LSIM
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Simulació de sistemes lineals continus en el temps a entrades arbitràries LSIM(A,B,C,D,U,T) dibuixa la
resposta temporal del sistema lineal:

x = Ax + Bu

y = Cx + Du

a l'entrada U. La Matriu U ha de tenir tantes columnes com les entrades. Cada fila de U correspon a un nou
punt de temps i U ha de tenir la llargada de (T) files.
LSIM(A,B,C,D,U,T,X0) pot utilitzar−se si existeixen condicions inicials

LSIM(NUM,DEN,U,T) dibuixa la resposta temporal de la funció de transferència: G(s) = NUM(s)/DEN(s)

Per definir una rampa:

T = 0:0.1:10; (variació en l'espai de temps i llavors)

U = k*t (rampa); U = k*t2 (paràbola); U = f(t) (qualsevol cosa)

4.2.3 BODE

Diagramade Bode (resposta freqüencial) del sistemes lineals continus en el temps

BODE(A,B,C,D,IU) fa el diagrama de Bode a l'entrada IU a totes les sortides dels estats del sistema
(A,B,C,D).

IU representa l'indexs de les entrades del sistema i especifica quina entrada s'usa per la resposta freqüencial.
Les freqüències són escollides automàticament

BODE(NUM,DEN) dibuixa el diagrama de Bode de la funció de transferència: G(s) = NUM(s)/DEN(s)

BODE(NUM,DEN,W) utilitza un vector de freqüències donat en rad/s on s'avaluarà el diagrama de Bode.

W =0:0.1:10 per freqüències entre 0−10 amb increment 0.1

W = LOGSPACE (−2,2) Marge de frequències entre −100 i 100 rad/ss

4.2.4 ALTRES FUNCIONS

RLOCUS (num,den)

Calcula i dibuixa les localitzacions de les arrels de:

H(S) = 1 + K* num (s) = 0

Den (s)

Per una selecció de guanys K per dibuixar una funció però es possible especificar el vector K fent Rlocus
(num,dem,k)

PZMAP (num,den)

10



Dibuixa el diagrama de pols−zeros de sistemes lineals continus en el temps.

En aquest cas computa els pols i zeros de la funció de transferència G(S) = num/den

Si el sistema té més d'una entrada, llavors els 0s de trasmissió són computats

[R,K] = RLOCFIND(NUM,DEN)

S'utilitza per seleccionar un punt de la localització d'arrels de la funció de transferència G(s) = num(s)/den(s).
La funció ens serveix per trobar els guanys de localitzacions d'arrels per una sèrie d'arrels donades

[num,dem] = SERIES(num1,den1,num2,den2)

Determina el polinomi que s'obté quan es connecten dues funcions de transferència Gi(s) = numi/deni quan
estan connectats en sèrie

[num,dem] = PARALLEL(num1,den1,num2,den2)

Determina el polinomi que s'obté quan es connecten dues funcions de transferència Gi(s) = numi/deni quan
estan connectats en paral.lel

CLOOP (num,den,func)

Produeix la funció de transferència en llaç tencat d'un sistema amb realimentació. La funció H(s) = func i
G(S) = num/den. Per fer una realimentació unitària cal que func sigui −1.

4.3. ESTUDI D'UN SISTEMA REALIMENTAT

El procés realimentat que es proposa té la següent estructura de dalt:

El Guany és un paràmetre K que cal determinar perquè el sistema sigui estable.

La funció de transferència del procés a controlar és de tercer ordre:

G(s) =  0'5 _

(s+10) (s2 + 0'1789s + 0'05)

4.3.1 DOMINIS FREQUENCIALS I TEMPORALS

Representeu gràficament la localització dels pols i els zeros de G(s) mitjançant la funció PZMAP. En
base a això determineu si hi ha dominància d'un parell de pols respecte el tercer pol i valoreu la
possibilitat de reduir l'ordre del sistema.

Per fer el producte de polinomis hem fet:
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Num1 = 1; num2 = 0'5; den1 = [1 10]; den2 = [1 0.1789 0.05] i llavors

[num,den] = Series (num1,den1,num2,den2)

La funció que transferència que hem obtingut és:

G(s) =  0.5____________

1s3 +10.1789s2 +1.839s + 0.5

>> PZMAP (num,den)

Aquí podem veure que els 2 pols imaginaris estàn molt a la vora de 0 encanvi el pol real està molt lluny, per
tant podem considerar que el pol a s+10 és recessiu i per tant, podem simplificar la funció de transferència a
una de 2on ordre

Segons el que s'ha exposat abans podem simplificar la funció de transferència sempre hi quan tinguem en
compte que el valor final de la simplificació ha de ser el mateix que el de la funció original sinó no seria una
simplificació vàlida:

G(s) =  0.5____________ Simplificant el pol s+10 ens queda:

1s3 +10.1789s2 +1.839s + 0.5

Lím G(s) = 0'5 = 1

s−>0 0'5

Gp(s) =  0.05______
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s2 + 0.1789s + 0.05

Comproveu que és possible la reducció comparant les respostes a un esglaó del sistema original i del
sistema reduït

Amb num = [0.5] i den = [1 10.1789 1.839 0.5] fem:

>> STEP (num,den) i ens queda la següent resposta:

I fem el mateix pel sistema reduït; num = [0.05], den = [1 0.1789 0.05]
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Representeu també el diagrama de Bode del sistema original. Compareu−lo amb l'anterior i indiqueu
en quin marge de freqüències és vàlida la reducció de l'ordre del sistema.

El diagrama de Bode del sistema original és:

I el diagrama de Bode del sistema simplificat és:
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Veient els diagrames de Bode podem dir que la simplificació és vàlida per totes les freqüències compreses
entre 10 i −10 Hz, i també per totes les altres freqüències:

En el sistema realimentat, però, aquest sistema simplificat ja no ens serà vàlid.4.3.2 ANALISI DE
L'ESTABILITAT

Cal calcular amb el controlador en llaç obert. Aneu variant el guany de K del controlador i determinar
el guany crític Klim pel qual el marge de guany es 0 (Bode) i el marge de fase és 0.

També es possible fer−ho amb Rlocus o RlocFind

Primerament s'introdueix el numerador i denominador i llavors per tencar l'anell es fa servir la ordre Cloop.

Per K = k, obtenim la següent Y(S)/R(S) = M(S)

M(S) =  0.5k_______________

S3 + 10.1789s2 + 1.839s + (0.5+0.5k)

Ara caldria analitzar del polinomi carácterístic quin valor de k fa que els 2 pols complexes tinguin part real 0,
es quan el sistema comença a inestabilitzar−se

Fent Rlocus amb el sistema en anell tancat obtenim

15



Hauriem de trobar el punt on els 2 pols complexes tenen part real 0, podem fer−ho amb:

[r,k] = rlocus (num,den) i mirant la matriu podríem obtenir el resultat desitjat.

R C1 C2

−10.0769 −0.0510 + 0.8992i −0.0510 − 0.8992i

−10.1912 0.0062 + 1.4016i 0.0062 − 1.4016i

Aproximant més obtenim els següents valors:

−10.1787 −0.0001 − 1.3554i −0.0001 + 1.3554i

−10.1792 0.0001 − 1.3572i 0.0001 + 1.3572i

Ja sabem ara que perquè sigui estable el polinomi ha de ser el producte d'això:

(s+10'179) (s2+1'8393) = s3 + 10'1789s2 + 1'839s + 18'722

la k, per tant serà:

k = 18'222*2 = 36'45 Aproximadament

Localitzeu els pols introduint el controlador en anell obert, aneu variant el guany de K del controlador i
determinar el guany crític Klim per al qual el marge de guany és 0 dB i el marge de fase és 0. Mirar els
diagrames de Bode

Per k = 1, els guanys són els següents ; 0.5/(s3 + 10.1789s2 + 1.839s + 1)
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Per 0dB freq = 0.2 Hz ;phase deg = −125º (aprox)

Per k = 5, els guanys són els següents ; 2.5/(s3 + 10.1789s2 + 1.839s + 3)

Per 0dB freq = 0.55 Hz, phase deg = −160º (aprox)

Per k = 10, els guanys són els següents ; 5/(s3 + 10.1789s2 + 1.839s + 5'5)

Per 0dB freq = 0.72 Hz, phase deg = −166º (aprox)

Per k = 15, els guanys són els següents ; 7'5/(s3 + 10.1789s2 + 1.839s + 8)

Per 0dB freq = 0.91 Hz, phase deg = −173º (aprox)

Per k = 20, els guanys són els següents ; 10/(s3 + 10.1789s2 + 1.839s + 10'5)

Per 0dB freq = 1.05 Hz, phase deg = −175º (aprox)

Per k = 30, els guanys són els següents ; 15/(s3 + 10.1789s2 + 1.839s + 15'5)

Per 0dB freq = 1.2 Hz, phase deg = −177º (aprox)

Per k = 40, els guanys són els següents ; 20/(s3 + 10.1789s2 + 1.839s + 20'5)

Per 0dB freq = 1.4 Hz, phase deg = −181º (aprox)

Per k = 35, els guanys són els següents ; 17'5/(s3 + 10.1789s2 + 1.839s + 18)

Per 0dB freq = 1.3 Hz, phase deg = −179º (aprox)

Veient això podem establir que la k està entre 35−40, podem afinar més fent un bode entre les frequències de
1.3 Hz i 1.4 Hz i intentar trobar el punt exacte on el guany és 0dB i la fase són −180º perquè si la fase és més
petita llavors vol dir que hem entrat en els semiplans positius i que el sistema és inestable.

Fent W = 1.3:0.001:1.4 i un diagrama de Bode podem determinar el valor de Wn

Fent això obtenim una freqüència Wn de 1.3565 rad/s (aprox)

A partir de la freqüència natural podem trobar el valor de k com abans, tot hi que per fer−ho estem aproximant
a un sistema de 2on grau com abans, però ho podem fer perquè el pol a s+10 és recessiu enfront els 2 pols
complexes molt pròxims a 0.

Wn2 = 0.5 + 0.5k 18'4 = 0.05 + 0.05 k k " 36'6

COMPROVACIÓ DEL VALOR DE K

Per comprovar el valor de K s'ha fer la tabulació de Routh−Hurwitz del sistema realimentant:

M(S) =  0.5k_______________

S3 + 10.1789s2 + 1.839s + (0.5+0.5k)
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S3 1 1.839

S2 10.1789 0.5+0.5k

S1 −0.5−0.5k + 18.719

10.1789

S0 0.5 + 0.5 k

Estabilitat, tots els elements 1era columna han de ser positius

0.5 +0.5k > 0 k > −1 se suposa que el guany és positiu!!

18.219−0.5k > 0 k < 36.26

Comprovar que la resposta temporal en anell tancat per a guanys K<Klim és estable i que per a guanys
K>Klim és inestable. Per tancar l'anell s'utilitza CLOOP. Representeu gràficament els pols i els zeros
del sistema realimentat. Relacioneu la seva posició amb l'estabilitat

S'han agafat 3 valors de k

K = 25 la funció de transferència és 12.5/(s3 + 10.1789s2 + 1.839s + 13)

K = 36.4 la funció de transferència és 18.2/(s3 + 10.1789s2 + 1.839s + 18.72)
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Per la k = 36'25 més o menys el sistema va oscil.lant des de 0 a 2 tot el temps sense esmorteïr−se gens ni mica
la senyalK = 50 la funció de transferència és 25/(s3 + 10.1789s2 + 1.839s + 30)

Com es pot veure en imatge, el sistema és inestable perquè creix contínuament fins a llegar a oscil.lar del +" al
−"

Representació dels pols i zeros del sisema realimentat
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Per fer−ho es fa servir la funció RLOCUS

Això és la representació dels pols del polinomi característic, el sistema serà estable sempre hi quan els pols
estiguin a la part negativa del semiplà complexe.

4.3.3. ESTUDI DEL RÈGIM ESTACIONARI

Amb el sistema amb enell tancat i un guany K<Klim observeu la resposta tem−poral a un esglaó, una
rampa i a una paràbola. Comproveu que els errors de po−sició, velocitat i desplaçament es corresponen
amb els d'un sistema de tipus 0.

Per fer−ho s'ha de fer servir la ordre LSIM i definir les funcions

Per un esglaó utilitzem la funció STEP (num,den) amb k = 20

M(s) = 10/(s3 + 10.1789s2 + 1.839s + 10'5) llaç tancat
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La rampa no és unitaria en la resposta sinó que s'estabilitza a 0.97, hi ha un error constant en la resposta.

Per definir una rampa hem de crear el vector t de temps i llavors un altre vector u que sigui una funció de 1er
ordre de t, la rampa nostra serà u = t

LSIM (num,den,u,t)
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Com es pot veure aquí, l'error de velocitat en estat estacionari és infinit, perquè el sistema no se'ns accosta a la
forma d'una rampa i a cada punt l'error es va fent cada cop més gran.

Per definir una paràbola hem de crear el vector t de temps i llavors un altre vector u que sigui una funció de
2on ordre de t, la rampa nostra serà u = t.*t

LSIM (num,den,u,t)

Com es veu a la gràfica, l'error d'acceleració per aquest sistema se'ns fa més gran cada cop que anem
incrementant l'espai temporal, per tant, l'error és infinit, cosa que ens mostra que és un sistema de tipus 0 ja
que els errors de velocitat i acceleració per aquest sistema son infinit i el de posició és una constant.

Afegiu al sistema un integrador. Busqueu la nova Klim i torneu a comprovar que els erros de posició,
velocitat i acceleració es corresponen amb els d'un sistema de tipus I.

Utilitzeu la funció PZMAP per veuree com canvien de posició els pols i els zeros del sistema
realimentat.

M(s) = 0'5k/s4 + 10.1789s3 + 1.839s2 + 0.5s + 0.5k llaç tancat
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A partir d'aquí podem determinar la Klim pel sistema de 4t ordre.

Després d'haver examinar els vectors que ens ha proporcionat la funció RLOCUS hem pogut determinar quan
els 4 pols estàn tots al semiplà negatiu i, per tant, el sistema és estable. Els resultats són:

−10.0000 −0.0344 + 0.2019i −0.0344 − 0.2019i −0.1102

−9.9999 0.0064 + 0.2268i 0.0064 − 0.2268i −0.1918

Interpolant:

(s+10)*(s2+0.0484)*(s+0.175) Calculant el terme independent i igualant:

Klim " 2*10*0.0484*0.175 " 0.168

Així si K>0.168 el sistema se'ns torna inestable.

ERRORS EN ESTAT ESTACIONARI

Per un sistema qualsevol hem agafat un valor de k de 0.1

La seva funció de transferència en llaç tencat és la següent:

M(s) = 0'05/s4 + 10.1789s3 + 1.839s2 + 0.5s + 0.05

Hem comprovat l'error de posició per una entrada de graó, la gràfica que ens surt de la resposta temporal per
una entrada esglaó és la següent:
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Es veu que l'error en aquest sistema és 0 ja que per una rampa unitària s'ens estabilitaza al valor de 1 que és el
valor de la rampa unitària.

Per una entrada en forma de rampa, la resposta temporal és la següent:

Com es pot veure l'error en la funció rampa és constant i és d'unes 10 unitats, això vol dir que la constant
d'error és 0.1 més o menys. Per una funció paràbola, si el sistema és de tipus I, hi hauria d'haver un error
infinit, cosa que es pot comprovar mirant la gràfica de la resposta temporal a una paràbola.
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Mirant aquesta gràfica podem apreciar que l'error a mesura que aumenta el temps s'ens va fent més gran, cosa
que indica que l'error d'acceleració és infinit.

Per tant: Es un sistema d'ordre I

Amb els resultats obtinguts a l'apartat 4.2.1 i 4.2.2 comproveu que es compleixen els teoremes del valor
inicial i final per entrades d'impuls, graó i rampa.

La funció de transferència pels apartats de STEP, IMPULSE i LSIM és

2s2+5s+1/ s2+2s+3 A impulsos, graons i rampes la resposta és:

Teorema valor inicial a esglaos

Per un sistema estable qualsevol es compleix que

Valor inicial lím s*R(S)*M(s) = Valor inicial On R(S) = Entrada

Esglaó s−>" M(S) = Funcio de transferència

Teorema Valor Final

Per un sistema estable qualsevol es compleix que:

Valor final lím s*R(S)*M(s) = Valor final On R(S) = Entrada

Esglaó s−>0 M(S) = Funció de transferència

VALORS INICIALS I FINALS A UN IMPULS
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R(S) = 1 M(S) = 2s2+5s+1/ s2+2s+3

V.I. = Lím s*(2s2+5s+1) = "

s−>" s2+2s+3

V.F. = Lím s*(2s2+5s+1) = 0

s−>0 s2+2s+3

VALORS INICIALS I FINALS A UN ESGLAÓ

R(S) = 1/s M(S) = 2s2+5s+1/ s2+2s+3

V.I. = Lím  (2s2+5s+1)_ = 2

s−>" s2+2s+3

V.F. = Lím  (2s2+5s+1) = 1

s−>0 s2+2s+3 3
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VALORS INICIALS I FINALS A UN A RAMPA

R(S) = 1/s2 M(S) = 2s2+5s+1/ s2+2s+3

V.I. = Lím  (2s2+5s+1)_ = 0

s−>" s*(s2+2s+3)

V.F. = Lím  (2s2+5s+1) = "

s−>0 s*(s2+2s+3)
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PRÀCTIQUES DE REGULACIÓ AUTOMÀTICA (EI)

DISSENY DE SISTEMES DE CONTROL

OBJECTIU• 

Els objectius de la pràctica són:

Obtenir el model d'un sistema a partir de característiques de la seva resposta• 

temporal

Obtenir un controlador de tipus K per a un sistema de forma que la resposta• 

temporal del sistema controlat obeeixi uns paràmetres determinats

Veure que no és assolible qualsevol conjunt d'aquest paràmetres• 

INTRODUCCIÓ TEÒRICA• 

Donat un sistema de segon ordre qualsevol, si es té el seu model podem saber algunes de les característiques
de la seva resposta a un esglaó. De la mateixa forma, si coneixem aquestes característiques, podem obtenir el
model del sistema.

Des del punt de vista de servosistema, ens interessa que un controlador posat sobre un sistema faci que aquest
segueixi la consigna mantenint uns paràmetres de precisió, velocitat, estabilitat, etc. A més, ens interessa que
aquests paràmetres es mantinguin davant de perturbacions, variacions de càrrega, etc. Aquest és el punt de
vista del regulador.

ESTUDI PREVI• 
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MODEL DEL SISTEMA• 

Un sistema G(s) desconegut es controla actualment de la forma indicada a la figura I. Sabem que davant un
esglaó unitari u(t) = us(t), la sortida del sistema controlat, que estava estabilitzada a 0, comença a augmentar,
passa de 10 al cap de 0.55 s, arriba a un màxim de 12 i finalment s'estabilitza a 10. Suposant que la funció
Y/R (n=0) és de segon ordre (pendent inicial de 0º), es demana:

Trobar aquesta funció de transferència• 
Trobar la funció de transferència en llaç obert• 

Sabem que un sistema genèric de 2on ordre té la següent funció de transferència:

M(s) =  k*�n2 _

s2+2��ns+�n2

M'estàn demanant un sistema que tingui un sobrepic de 20% i d'un temps de retard (aproximadament) de
0.55s, aplicant les fórmules podem treure �,�

Sobrepic

1.6094 = 3.1416�/"1−� elevant al quadrat 2.59 = 9.87�/1−�

(9.87 + 2.59) � = 2.59 � = (2.59/12.46) 1/2 = 0.456

Temps de retard

Tr = 1−0.4167�+2.917� = 1−0.4167*0.456+2.917*0.4562 = 1.4165

�n �n �n

0.55 = 1.4165 �n = 2.575

�n

l'equació del sistema en llaç tancat és:

s2+2��ns+�n2 = s2 + 2*0.456*2.575s + 2.5752 = s2 + 2.348s + 6.63
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és G/(s2 + 2.348s + 6.63) si el guany és 10 G = 66.3

Per calcular el llaç obert cal fer la següent operació

M(S) = K*G(S) / 1+K*G(S)H(S) on K = 10; H(S) = 0.1

M(S) = 10G(S) M(S)+M(S)G(S) = 10G(S) G(S) =  M(S)__

1+G(S) 10−M(S)

G(S) =  66.3/(s2 + 2.348s + 6.63) __ =  __6.63 _

10−66.3/(s2 + 2.348s + 6.63) s2 + 2.348s

Aquí hem obtingut la funció de transferència del llaç obert.

Per demostrar que la funció M(S) es bona, aquí es dona la seva gràfica.

3.2.Disseny del sistema de control

Es proposa com a nova estructura de control la de la figura 2, en la que el controlador és unicament un guany
K (controlador P)
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3.2.1 Trieu el valor de K de forma que la resposta a un esglaó unitari el sobrepic sigui menor o igual al 5%

3 = 3.1416�/"1−� elevant al quadrat 9 = 9.87�/1−�

(9.87 + 9) � = 9 � = (9/18.87) 1/2 = 0.691

evidentment, si volem ser mes barroers, podem agafar �=0.707 (4'3% sobrepic)

� = cos � � = arccos 0.691 = 46.29º

cotg � = cotg 46.29 = 0.956

Ara es pot obtenir utilitzant la funció RLOCUS per intentar trobar la K que correspon a aquest angle:

Podem trobar la K necessària si examinem les matrius que ens dóna la funció rlocus, a partir d'aquí podrem
determinar la K.

Per fer hem de trobar les matrius R i K de la funció RLOCUS

[R,K] = rlocus (num,den) d'aquí podem determinar el valor de K

per fer−ho hem obtingut la cotg � = 0.956 = part real/part imaginària

Alguns dels resultats que obtenim són :

Arrels K Cotg
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−1.1740 + 0.1522i −1.1740 − 0.1522i 0,2114 7,71

−1.1740 + 0.2785i −1.1740 − 0.2785i 0,2196 4,22

−1.1740 + 0.3662i −1.1740 − 0.3662i 0,2281 3,49

−1.1740 + 0.4391i −1.1740 − 0.4391i 0,2370 2,67

−1.1740 + 0.5038i −1.1740 − 0.5038i 0,2462 2,33

−1.1740 + 0.5632i −1.1740 − 0.5632i 0,2557 2,08

−1.1740 + 0.6189i −1.1740 − 0.6189i 0,2657 1,90

−1.1740 + 0.6719i −1.1740 − 0.6719i 0,2760 1,70

−1.1740 + 0.7228i −1.1740 − 0.7228i 0,2867 1,62

−1.1740 + 0.7722i −1.1740 − 0.7722i 0,2978 1,52

−1.1740 + 0.8203i −1.1740 − 0.8203i 0,3094 1,43

−1.1740 + 0.8675i −1.1740 − 0.8675i 0,3214 1,35

−1.1740 + 0.9139i −1.1740 − 0.9139i 0,3339 1,28

−1.1740 + 0.9598i −1.1740 − 0.9598i 0,3468 1,22

−1.1740 + 1.0052i −1.1740 − 1.0052i 0,3603 1,17

−1.1740 + 1.0504i −1.1740 − 1.0504i 0,3743 1,12

−1.1740 + 1.0953i −1.1740 − 1.0953i 0,3888 1,07

−1.1740 + 1.1401i −1.1740 − 1.1401i 0,4039 1,03

−1.1740 + 1.1848i −1.1740 − 1.1848i 0,4196 0,99

−1.1740 + 1.2295i −1.1740 − 1.2295i 0,4359 0,97

−1.1740 + 1.2743i −1.1740 − 1.2743i 0,4528 0,93

−1.1740 + 1.3193i −1.1740 − 1.3193i 0,4704 0,90

−1.1740 + 1.3644i −1.1740 − 1.3644i 0,4887 0,87

−1.1740 + 1.3985i −1.1740 − 1.3985i 0,5029 0,83

−1.1740 + 1.4967i −1.1740 − 1.4967i 0,5458 0,78

−1.1740 + 1.7602i −1.1740 − 1.7602i 0,6752 0,67

−1.1740 + 2.3850i −1.1740 − 2.3850i 1,0658 0,49

−1.1740 + 3.6750i −1.1740 − 3.6750i 2,2449 0,32

−1.1740 + 6.0910i −1.1740 − 6.0910i 5,8037 0,19

Mirant la taula determinem que:

K = 0'436

llavors la funció G(S) ens queda: 6'63K =  3.05______

s2 + 2.384s + 6'63K s2+2.384s + 3.05

Les arrels d'aquest sistema són:

−1.1920 + 1.2764i

−1.1920 − 1.2764i

3.2.2. Trieu el valor de K de forma que es compleixe l'especificació de sobrepic de l'apartat 3.2.1. i que
el temps d'estabilització dins una banda del 2% al voltant del valor d'equilibri sigui menor o igual que
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2.15s

segons l'equació del temps d'assentament a una banda del 2%:

�nts = −1*ln(0.02*(1−�) 1/2) sabem que ts = 2.15s, llavors aïllem �n

�

�n =−__ 1 _*ln(0.02*(1−0.6912) 1/2) = −0.643*ln(0.02*0.723) = 2.72 rad/s

0.691*ts

� = �n*(1−0.6912) 1/2 = 2.72*0.723 = 1.97i (de part imaginària)

Per lo de l'esmorteïment, la K ha d'ésser més petita que 0.449, que és el valor màxim, per sobrepics més petits
l'esmorteïment ha d'ésser més gran i la K més petita.

Però, per pulsacions, quan més gran és la pulsació del sistema més petit és el temps d'establiment, per un
temps d'establiment de 2.15s tenim una pulsació, de 2.72 rad/s

−1.1740 + 1.7602i −1.1740 − 1.7602i 0,6752

−1.1740 + 2.3850i −1.1740 − 2.3850i 1,0658

Interpolant obtenim una K = 0.675 + (1.97−1.76)*(1.066−0.675) >= 0.806

2.39−1.76

Per tant, no és assolible el que ens proposem

3.2.3. La figura 3 incorpora un determinat tipus de pertorbació al sistema. Trobeu la funció de
transferència Y/P quan no tenim en consideració l'entrada del sistema u. Aquesta funció de
transferència ens representa la resposta del sistema a les perturbacions. És el punt de vista del
regulador.

Mirant el sistema per una entrada r=0, tenim el següent:
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Y/P = G(S) =  6.63________

1+KG(S) s2+2.348s+6.63K

4. REALITZACIÓ DE LA PRÀCTICA

4.2. Estudi del sistema sense controlar

Observeu la resposta de G(s) en anell obert a l'aplicar−li un esglaó i al aplicar−li un impuls.

Tenim que G(s) en anell obert és  6.63___

s2+2.348s

Al aplicar−hi un esglaó obtenim la següent resposta:

I al aplicar−li un impuls unitari obtenim la següent resposta:
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4.3. Estudi de l'estabilitat

Estudieu l'estabilitat del sistema, utilitzant els diagrames de bode amb g(s)

A partir dels diagrames deduïu quin és el guany Klim a partir del qual el sistema realimentat es torna
inestable.

Tenim que G(s) en anell tancat és  ___6.63K____

s2+2.348s+6.63K

Trazant el diagrama de Bode d'aquest sistema tenim:
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Representeu gràficament els pols i els zeros del sistema realimentat. Relacioneu la seva posició amb
l'estabilitat.

Aquí es pot veure que per Ks positives el sistema mai és inestable perquè les arrels sempre estàn a la part real
negativa.

4.4. ESTUDI DEL SISTEMA REALIMENTAT
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4.4.1. Comproveu que controlant el sistema amb el guany que heu obtingut a l'apartat 3.2.1. es
compleix l'especificació de control SP<=5%

El guany que s'ha obtingut es k = 0.436, aplicant un glaó al sistema amb el guany especificat s'ha obtingut la
següent resposta temporal:

El valor final és 1, i el sobrepic mirant el gràfic és 1.05 aproximadament, per tant es compleix l'especificació
que ens han posat.

4.4.2. Comproveu que controlant el sistema amb el guany que heu obtingut a l'apartat 3.2.2. es
compleixen les especificacions de control SP<=5% i t<=2.15 s, Si no es poden complir les 2
simultàniament, busqueu una solució de compromís. És a dir un guany K que faci que ens acostem el
màxim possible a les especificacions de control encara que no arriben a assolir−les.

Segons lo de l'apartat 3.2.2., els resultats que tenim són:

Per complir SP<=5% K < 0.449

Per complir ts <=2.15s, K > 0.806 (aprox)

Veiem que no podem complir les 2 especificacions que ens hem proposat, el que hem de fer és intentar
acomplir les 2 quan més poguem.

Especificacions a conseguir:

� > 0.707; �n > 2.72 �� > 1.923

Especificacions que podem obtenir:

� > 0.707; �n < 2.72 Arrels (−1.1920 + 1.2764i,−1.1920 − 1.2764i) ��=1.192
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Podem intentar buscar el que s'acosti més a les nostres especificacions.

No posarem les arrels reals perquè ens apareixerien pols costats de 0 que serien dominants i molt més lents

La millor serà que tingui un esmorteïment el més pròxim al 5%, així la omega serà més gran. Posarem
�=0.691 (límit obtindrem � més gran)

Per aconseguir−ho fem �=1, llavors obtenim �n=1.192/0.691 = 1.725 rad/s

La K per aquesta funció és 1.7252/6.63 = 0.4488

4.4.3. Observeu la resposta de Y quan apliquem al sistema controlat una perturbació en forma d'esglaó
unitari. Per fer−ho utilitzar la funció de transferència que heu obtingut a l'apartat 3.2.3. tenint en
compte el valor de K que heu escollit a l'apartat 4.4.2. Fixeu−vos en el pic que ens apareix en aquesta
resposta.

Y/P = G(S) =  ___ 6.63________

1+KG(S) s2+2.348s+6.63*0.214

La resposta d'aquest sistema a un esglaó unitari és la següent:

4.4.4. Escolliu un nou valor de K que ens faci que aquest pic sigui menor o igual a 2.25 i es segueixin
complint tant com sigui possible les especificacions anteriors.

El sobrepic que ens apareix al 4.4.1 per k = 0.436 és una mica superior a 2.25, per intentar que es rebaixi a
2.25 hem de disminuir el valor de K ja que el valor final:

Vfinal de funció transfer perturbació =  6.63_ fent el limit
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6.63*K

El sobrepic es calcula amb la fórmula ja donada a l'apartat 3.2.1.

Cal relacionar el valor final amb el sobrepic

1 +  SP =2.25 aproximem dient que SP=5%, llavors obtenim la següent equació:

K 100*K

1 + 0.05 = 2.25 Obtenim K = 0.47

K K

Per aquesta constant K obtenim amb la perturbació (entrada 0), aquesta resposta:

La resposta del sistema amb perturbacions = 0, ens donarà un sobrepic una mica més gran de 5% i un temps
de retard més proper a 2.15s que abans. No podem aconseguir acostar−nos més a les especificacions.

4.4.5. Utilitzeu el simulink per veure la resposta del sistema de la figura 3 quan tenum un esglaó unitari
de consigna per t=1 s i un esglaó de pertorbació quan t=5s

Sense perturbació:
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Amb perturbació:
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5.2.

Expliqueu en aquest informe per què a l'apartat 4.4.5. la resposta del sistema no es torna a estabilitzar
a y=1 després de l'esglaó de pertorbació. Es tornaria a estabilitzar a y=1 si hi poséssim un controlador
PI?

Això ens passa perquè a l'apartat 4.4.5. la pertorbació ens afecta el sistema i ens canvia el seu comportament.

Podem demostrar−ho aplicant el teorema de superposició:

Y/R =  6.63K Y/N =  6.63______ (en llaç tencat)

s2+2.384s+6.63K s2+2.384s+6.63K

la k que hem posat és 0.

Aplicant el valor final per esglaons

Lím Y/R = 1 Lím Y/N =  6.63 = 1_

s−>0 s−>0 6.63*K K

Sumant:

Vfinal = 1+1/K = (K+1)/K (si K=0.436) 1.436/0.436 = 3.29

Per això la resposta no se'ns estabilitza a y=1

Un controlador PI (Proporcional Integratiu) el que ens fa és reduir−nos l'error del sistema (en el cas del nostre
sistema, l'error que tenim en una rampa ens desapareixerà i el sistema podrà seguir−nos, però amb error,
entrades de tipus paràbolic. Un controlador PI ens actua afegint un integrador i un zeroLa nova

Suposem que el zero no ens afecta, llavors amb un integrador la funció de transferència Y/N és

Y/P =  G(S) =  ___ 6.63s____

1+KG(S) s2+3.348s+6.63K

El seu valor final per esglaons és

Lím s−>0 Y/P = 0/6.63K = 0

La funció

Y/R = 6.63K El seu valor final és 1 (abans calculat)

s2+3.348s+6.63K

Aplicant el teorema de Superposició, el valor final que obtenim és:

Vfinal = 0 +1 = 1
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Per tant se'ns estabilitza el sistema a 1, amb el controlador PI hem aconseguit eliminar els efectes de la
perturbació.

Disseny de Sistemes de Control fent servir

el Lloc d'Arrels

5.1. Anunciat del problema

En aquesta pràctica aprendrem a dissenyar controladors del tipus PI, PD i PID fent servir la tècnica del lloc
d'arrels. El sistema que es desitja controlar és un motor de corrent continu del qual se li vol controlar la
posició del seu eix. L'esquema del sistema de control seria el següent:

S'ha arribat a què el model d'un motor de corrent continu és el següent:

Gp(s) =  _ 1____ H(s) = 1 (sensor)

s(s2+4s+5)

Les especificacions de disseny que s'han fixat per la resposta temporal del sistema controlat són les següent:

La resposta del sistema controlat ha de presentar una resposta amb un sobrepic inferior al 5%• 
L'instant en què es produeix el sobrepic ha d'ésser igual a 2 s• 
L'error estacionari davant d'una consigna rampa ha d'esser inferior a 1• 

5.2. Relació entre el lloc d'arrels i la resposta temporal

El lloc d'arrels mostra l'evolució dels pols del sistema controlat en el plà complexe en funció d'un paràmetre
de la funció de transferència en llaç obert, normalment el guany de l controlador. Si a partir del lloc d'arrels
arribem a determinar els pols dominants del sistema controlat podrem predir quina serà la seva resposta
temporal.

Així, per exemple, si suposem que el sistema té 2 pols dominants:

s = −��n±j(1−�) 1/2*�n = � ± �d

Llavors la seva resposta temporal davant d'una entrada graó unitari serà:

Y(t) = 1−  1 *e−��nt cos (�dt − arcsin(�))

(1−�) 1/2

Sobre la qual es defineixen les següents característiques
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Temps de Pic: Tp =  �___

(1−�) 1/2*�n

Màxim Sobrepic: SP = 100*exp(__−��__)

(1−�) 1/2

Temps establiment (2%) = 4/��n

5.3. Disseny de controladors P usant el lloc d'arrels

Determineu el guany d'un controlador P (guany)

Gp(s) = Kp

Que proporcioni al sistema una resposta temporal amb un sobrepic inferior al 5%

100*exp(__−��__) = 5 solucionant s'obté �>0.691

(1−�) 1/2

Pel temps d'establiment �n=4/�*ts = 2.83 rad/sec

Per facilitat agafem �=0.707 sabem que �=cos �

� = arccos(0.707) = 45º tg � = part imaginària/part real, per tant:

part real/part imaginària = cotg � = cotg 45 = 1

Gp(s) =  _ K____ H(s) = 1 (sensor)

s(s2+4s+5)

Pel lloc d'arrels

1+KG(s)H(s) = 0 G(s)H(s) = 1/s(s2+4s+5)

fem RLOCUS (num,den) i obtenim:
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Hem d'agafar l'area on es compleixi que �>0.691 i obtenir una K

Mirant les matrius que ens dona la funció RLOCUS veiem que:

R1 R2 R3 K

−0.7833 + 0.7578i −0.7833 − 0.7578i −2.4334 2.8905

−0.7695 + 0.7876i −0.7695 − 0.7876i −2.4610 2.9840

A partir d'aquí obtenim Kp = 2.97 (aproximadament)

5.4. Disseny de controladors PI usant el lloc d'arrels

La funció de transferència d'un controlador PI és:

Gp(s) = Kp + Ki/s = K(s+a)/s

El procediment de disseny de controladors PI fent servir el lloc d'arrels consta dels següents passos:

Determinar el guany Kp del sistema només amb el controlador P• 

El guany del controlador P s'ha trobar a l'apartat 5.3. i es Kp = 2.97

Determinar � i �n dels pols dominants del sistema sense controlar• 

Això s'obté fent damp (den) obtenim � i �n

Eigenvalue Damping Freq. (rad/sec)

0 −1.0000 0
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−2.0000 + 1.0000i 0.8944 2.2361

−2.0000 − 1.0000i 0.8944 2.2361

L'esmorteïment és 0.8944 i la frequència són 2.236 rad/sec

Per un sistema tipus I, escollirem inicialment:• 

K = Kp a = 2 * ��n(1−8�)

9• 

K = 2.97; a = 0.666*0.8944*2.236(1−0.888*0.89442) = 0.3852

Si fós de tipus 0 escolliríem K = Kp a'= a*[(Ko+1)/ko]

Examinar el lloc d'arrels en funció del paràmetre a. Determinar un valor de a que ens
proporcioni la màxima estabilitat relativa, o sigui, un factor d'esmorteïment de 0.7 pels pols
dominants del sistema realimentat

• 

El lloc d'arrels ens calcula:

NUM(s)

H(s) = 1 + k −−−−−−−−−− = 0 on n(s)/d(s) = Gp(s)

DEN(s)

En el nostre càs hem de fer−ho variar amb el paràmetre a. Llavors:

H(S) = 1 + K*H(s)G(s) = 1 + K(s+a)*  1____

S s(s2+4s+5)

Si ens donem compte ho estem variant amb el paràmetre K, llavors ho hem de transformar perquè ens variï
amb el paràmetre a

1+KGp(s)s + KGp(s)a = 1+KGp(s)+kGp(s)a = (sabent que K=2.97)

s s s

1+2.97Gp(s) + 2.97Gp(s)a = 1+2.97aGp(s)_ = 1+a*Ga(s)

s s(1+2.97Gp)

Calculant Ga(s):

Ga(s) = __2.97*/(s3+4s2+5s) = 2.97

s(1+2.97/s3+4s2+5s) s4+4s3+5s2+2.97s

A partir d'aquesta funció que s'ha obtingut es dibuixa el lloc de les arrels i es troba la K per la qual obtinguem
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un esmorteïment de 0.7

Examinant els vectors que ens dóna la funció rlocus podem determinar el paràmetre a del controlador PI,
sabent que el seu esmorteïment ha d'ésser 0.7

Com hem determinat abans, la relació entre part real i imaginària ha d'esser d'1

R1 R2 R3 R4 K

−0.0059 −0.7696 + 0.7782i −0.7696 − 0.7782i −2.4549 0

−0.0183 −0.7655 + 0.7675i −0.7655 − 0.7675i −2.4507 0

Davant la impossibilitat de trobar la K d'aquesta manera s'ha utilitzat la funció RLOCFIND per aproximar
més el valor de K, s'ha trobat el següent:

Punt seleccionat: −0.6995 + 0.6908i (molt pròxim a 45º)

ans = 0.0076

o sigui, la nostra a ens val 0.0076

Per comprovar que és un valor adequat es dibuixa la resposta temporal del sistema amb el controlador PI a un
esglaó i a una rampa

La nostra funció de transferència en llaç tancat és:

2.97(s+0.0076) _ _ =  2.97s+0.0226___

s4+4s3+5s2+2.97s+0.076*2.97 s4+4s3+5s2+2.97s+0.023
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I les respostes a un esglaó i una rampa són:

Com es pot veure, el sistema ens compleix 2 requeriments: no te error per una rampa i l'esmorteiment és <5%,
però el temps de pic és >1 sec. Els PI van molt bé per disminuir l'eror dels sistemes (incrementar el tipus del
sistemes) però com a contrapartida ens alenteixen els sistemes, aquests tenen un temps d'establiment major.

5.5. Disseny de controladors PD usant el lloc d'arrels

La funció de transferència d'un controlador PD és:
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Gp(s) = Kp + Kds = K(1+As)

El procediment de disseny de controladors PD fent servir el lloc d'arrels consta dels següents passos:

Determinar el guany Kp del sistema només amb el controlador P que proporciona màxima
estabilitat relativa, o sigui, un factor d'esmorteïment � = 0.7 pels pols dominants del sistema
realimentat.

• 

Aquest valor de Kp ja ha estat calculat a l'apartat 5.3 i és: Kp = 2.97

Determinar el factor d'esmorteïment � i la frequència natural � del sistema sense controlar• 

Això s'obté fent damp (den) obtenim � i �n

Eigenvalue Damping Freq. (rad/sec)

0 −1.0000 0

−2.0000 + 1.0000i 0.8944 2.2361

−2.0000 − 1.0000i 0.8944 2.2361

L'esmorteïment és 0.8944 i la frequència són 2.236 rad/sec

Escollir K/Kp > 1 fins a aconseguir un error estacionari raonable (menor que 0.1 davant d'un
graó si el sistema sense controlar es de tipus 0, o bé, davant una rampa si el sistema sense
controlar és de tipus 1

• 

L'error en estat estacionari per una rampa en el sistema amb controlador PD és:

G(s) = Kp+KdS

s(s2+4s+5)

Kv = Lím s*(Kp+Kds) = Kp

s−>0 s(s2+4s+5) 5

Ess = 1/Kv = 5/Kp en el problema ens diu que l'error ha de ser menor que 1: aixins:

Tenim que Kp = 5, aquesta es la K que hauríem de posar perquè el sistema ens donés un error menor de 1.

Examinar el lloc d'arrels en funció del paràmetre A. Determinar el valor de A que ens
proporcioni la màxima estabilitat relativa, o sigui, un factor d'esmorteiment de 0.7 pels pols
dominants del sistema realimentat.

• 

El lloc d'arrels ens calcula:

NUM(s)

H(s) = 1 + k −−−−−−−−−− = 0 on n(s)/d(s) = Gp(s)
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DEN(s)

En el nostre càs hem de fer−ho variar amb el paràmetre A. Llavors:

H(S) = 1 + K*H(s)G(s) = 1 + K(1+As)*  1____

s(s2+4s+5)

Si ens donem compte ho estem variant amb el paràmetre K, llavors ho hem de transformar perquè ens variï
amb el paràmetre a

1+KGp(s) + KGp(s)As = 1+KGp(s)+kAsGp(s) = (sabent que K=2.97)

1+2.97Gp(s) + 2.97Gp(s)As = 1+2.97AGp(s)s_ = 1+A*Ga(s)

(1+2.97Gp)

Calculant Ga(s):

Ga(s) = 2.97s*/(s3+4s2+2.97s)_ =  2.97s____

(1+2.97/s3+4s2+2.97s) s3+4s2+5s+2.97

A partir d'aquesta funció que s'ha obtingut es dibuixa el lloc de les arrels i es troba la A per la qual obtinguem
un esmorteïment de 0.7

Examinant els vectors que ens dóna la funció rlocus podem determinar el paràmetre a del controlador PI,
sabent que el seu esmorteïment ha d'ésser 0.7 aprox

Com hem determinat abans, la relació entre part real i imaginària ha d'esser de 0.95

49



R1 R2 R3 A

−0.6124 −1.6938 + 1.4074i −1.6938 − 1.4074i 0.6479

−0.5005 −1.7498 + 1.6950i −1.7498 − 1.6950i 0.9044

La A aproximadament, interpolant ens ha de valdre

Llavors s'agafa A = 0.875

Un cop determinada la A, amb la K que s'ha aconseguit abans el controlador és:

K(1+As) = 5(1+5*0.875s) = 2.97 + 2.6s

La funció de transferència del sistema en llaç obert ens queda:

5 + 2.31s en llaç tancat:  2.97+2.6s__

s3+4s2+5s s3+4s2+7.6s+2.6

Examinant el sistema per un graó i una rampa amb el controlador PD:
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Com es pot veure estem complint només 1 especificació: la de que el sobrepic no sigui superior al 5%. Això
és degut a què el pol real ens afecta molt al sistema perquè es molt proper al 0. Tot hi aixó si miren les arrels
del polinomi característic:

Eigenvalue Damping Freq. (rad/sec)

−0.5104 1.0000 0.5104

−1.7448 + 1.6657i 0.7233 2.4122

−1.7448 − 1.6657i 0.7233 2.4122

Veiem que sense el pol real compliríem 2 especificacionsDISSENY DE CONTROLADORS PID USANT
EL LLOC D'ARRELS

La funció de transferència d'un controlador PID (Proporcionar integrador−derivador) és:

Gc(s) = Kp + Kds + Ki/s = K(s+a)/s + Kas

El procediment de disseny de controladors PID fent servir el lloc d'arrels consta dels següents passos:

Ajust del controlador PI amb A=0• 
Determinar el guany Kp del sistema només amb el controlador P que proporcioni un � de 0.7
pels pols dominants del sistema realimentat.

• 

Ja ha estat calculat a l'apartat 5.3 i és de: Kp = 2.97

Determinar � i �n dels pols dominants del sistema sense controlar• 

Això ha estat determinat a l'apartat 5.4 i els valors són:
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� = 0.8944

�n = 2.236 rad/sec

Per un sistema tipus I, escollirem inicialment:• 

K = Kp a = 2 * ��n(1−8�)

9• 

Ha estat determinat a l'apartat 5.4 i el valor de a és:

a = 0.3852

Si fós de tipus 0 escolliríem K = Kp a'= a*[(Ko+1)/ko]

Examinar el lloc d'arrels en funció del paràmetre a. Determinar un valor de a que ens
proporcioni la màxima estabilitat relativa, o sigui, un factor d'esmorteïment de 0.7 pels pols
dominants del sistema realimentat

• 

Això ja ha estat determinar a l'apartat 5.4 i la funcio de transferència del controlador PI ens ha donat que era la
següent:

GPI = 2.97(s+0.0076)

s

Ajust del controlador PD amb a=0

Escollir K/Kp > 1 fins a aconseguir un error estacionari raonable• 

Això ja ha estat determinat a l'apartat 5.5 i la Kp ha resultat ésser >=5

Examinar el lloc d'arrels segons el paràmetre A. Determinar un valor de A que ens proporcioni
un �=0.7 pels pols dominants del sistema realimentat

• 

Això ha estat calcular a l'apartat 5.5 i els valors són:

A = 0.875

GPD = 2.97(0.875s+1)

Ajust final del controlador PID• 

La funció de transferència del PID segons els valors de A,a i K que hem obtingut és:

Gc = Ki+Kp + Kds = 0.0226/s + 2.97+2.6s

S

La funció de transferència del sistema en llaç obert és:
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2.6s2 + 5s + 0.0226

s2(s2+4s+5)

Hem mirat les arrels del sistema i ens ha donat el següent:

Eigenvalue Damping Freq. (rad/sec)

−0.0078 1.0000 0.0078

−0.5000 1.0000 0.5000

−1.7461 + 1.6655i 0.7236 2.4131

−1.7461 − 1.6655i 0.7236 2.4131

Com que els 2 pols són molt pròxims al 0 ens alenteixen molt el sistema i el controlador no ens compleix totes
les especificacions.

Com que el sistema no tenia les prestacions desitjades s'ha anat variant els valors de K i A fins a aconseguir
que es complissin les prestacions del sistema controlat

Hauriem de trobar algun controlador que ens anulés l'efecte d'aquests pols reals.

A partir d'aquí hem construit el lloc d'arrels; Pensant que si tenim una freqüència natural mes alta podem
cancelar l'efecte dels pols reals i que el sistema ens compleixi totes les especificacions.

Damping < 0.7

Kv > 1

Freqüència natural > 2.828
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Agafant un punt de freqüència mes alta obtenim:

Hem agafat un punt que ens fes que la K > 5 (per complir l'error)

Multiplicant tot pel factor 3 obtenim la següent funció transferència:

Gp(s) = 7.8s2 + 8.91s + 0.0678_____

s4 + 4s3 + 12.8s2 + 8.91s + 0.0678

Les gràfiques de la resposta temporal per un esglaó i una rampa són:
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Així que el sistema ens compleix les 3 especificacions que li demanàvem.

Disseny de Sistemes de Control fent servir

Els diagrames de Bode

6.1. Anunciat del problema
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En aquesta pràctica aprendrem a dissenyar controladors del tipus PI, PD i PID fent servir la tècnica dels
diagrames de Bode. El sistema que es desitja controlar és un motor de corrent continu del qual se li vol
controlar la posició del seu eix. L'esquema del sistema de control seria el següent:

S'ha arribat a què el model d'un motor de corrent continu és el següent:

Gp(s) =  _ 1____ H(s) = 1 (sensor)

s(s2+4s+5)

Les especificacions de disseny que s'han fixat per la resposta temporal del sistema controlat són les següent:

La resposta del sistema controlat ha de presentar una resposta amb un sobrepic inferior al 5%• 
L'instant en què es produeix el sobrepic ha d'ésser igual a 2 s• 
L'error estacionari davant d'una consigna rampa ha d'esser inferior a 1• 

De la pràctica anterior havíem deduït que:

Per complir aquests 3 requisits els valors que hem de complir són:

�n > 2.828 (complir que ts<2 sec)

� > 0.691 (complir que el SP<5%)

Kv > 1 (per complir l'error en estat estacionari d'una rampa)

6.2. Relació entre les especificacions temporals i freqüencials

A partir del diagrama de Bode del sistema a controlar es pot predir en molts casos la resposta temporal del
sistema realimentat (pel cas de realimentació unitària). Així es pot demostrar que per un sistema controlat amb
dos pols dominants:

S = −��n ± j(1−�) 1/2 �n

La freqüència de tall obtinguda a partir del diagrama de Bode del sistema sense controlar és aproximadament
igual a la freqüència natural del sistema controlat:

Per altra banda, a partir del marge de fase obtingut a partir del diagrama de Bode del sistema sense controlar
es pot predir quin serà el valor del factor d'esmorteïment del sistema controlat:

� = 0.01*MF

6.3. Disseny de controladors P fent servir el diagrama de Bode
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Determineu el guany d'un controlador de proporcional:

Gp(s) = Kp

Que proporcioni al sistema controlat una resposta temporal amb SP < 5%

Sabem que � = 0.01*MF llavors el MF = 70º pel sistema amb SP < 5%• 

Primerament hem de fer el diagrama de Bode de Gb(s) = G(S)*H(S)

Gb(s) =  _ _1____ (cal fer el diagrama de Bode d'això)

s(s2+4s+5)

Per obtenir els marges de fase i de guany del sistema necessitem utilitzar la funció MARGIN (num,den) on
num,den són el numerador i denominador de la funció

G(s)*H(s) i estan amb la variable s de Laplace.

MG = 20; MF = 80.88º

Hem d'aconseguir reduir el MF de 80.88º a uns 70º, sabem que hem d'obtenir el guany per un marge de fase
de 70º i restar−lo del de 80.88º per obtenir el guany en dB que serà la K que hem de posar.

De les matrius de Bode hem obtingut el següent

MAG DB PHASE W

0.452 (−6.89) −109.7879 0.3511
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0.362 (−8.83) −114.3574 0.4329

Interpolant entre els valors de la taula anterior, obtenim que per una PHASE de 70º, el guany en dBs ha
d'ésser de −7 dB

Sabent que la K inicial fóra 1, llavors hem d'obtenir la nova K per la qual el guany ens puja 7 dB perquè el
marge de fase ens sigui de 70º

K = 7dB = 2.238

Ara s'ha tornat a dibuixar el diagrama de Bode per comprobar la validesa de la K

G(S)H(S) =  _ _K____ (on K = 2.24) Fem el diagrama de Bode d'aquesta funció

s(s2+4s+5)

S'ha fet margin per obtenir els marges de fase i guany del sistema
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Per tant es pot veure que complim l'especificació que el marge de fase sigui menor de 70.

Com veiem l'esmorteïment és molt inferior al 5%, això es degut a què la formula que hem utilitzat és molt
aproximada.

6.4. DISSENY CONTROLADORS PI USANT DIAGRAMA DE BODE

La funció de transferència en el domini freqüencial d'un controlador PI és:
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Gc(j�) = K(1+ j�/a)

j�/a

El disseny de controladors PI consisteix en determinar els paràmetres K i a del controlador fins aconseguir
que el sistema controlat funcioni amb les prestacions desitjades.

El procediment de disseny de controladors PI amb els diagrames de Bode consta dels següents passos:

Obtenir el diagrama de Bode de KGp(s) per al sistema sense controlar prenent K=Kp, essent
Kp el gyuany del controlador proporcional calculat a l'apartat 6.3

• 

Determinar la freqüència del marge de fase ��, el marge de fase � i el coeficient d'error del
sistema controlat per un controlador P, a partir del diagrama de Bode de l'apartat anterior.

• 
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d'aquí obtenim les següent dades:

�� = 0.436 rad/sec; MF = 70º; Kv = 5/2.238 = 2.234

Escollir a = 0.1�� per tal de mantenir el marge de fase del sistema controlat al volar fixat
mitjançant el controlador P

• 

a = 0.1�� = 0.436*0.1 = 0.0436 rad/sec

Escollir K=Kp• 

K = Kp = 2.238

Obtenir el diagrama de Bode de G'c( j�)Gp(j�) on G'c(s) és la funció de transferència del
controlador PI sense el factor K

• 

G'c*Gp =  (1+a/s) =  s+a . (Fer el diagrama de Bode d'aquesta funció)

s(s2+4s+5) s2(s2+4s+5)
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Determinar el nou marge de fase tenint en compte que la nova freqüència de tall �� és la
freqüència a la qual:

• 

|G'c( j�)Gp(j�)| = 1/k

d'aquí obtenim el marge de fase que són 68º i la freqüència de tall és 0.2035
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Variar els paràmetres K i a fins aconseguir les prestacions de disseny establertes• 

Amb el que hem trobat a l'apartat anterior veiem que el marge de fase és 68º, per tant se'ns compleix que més
o menys l'esmorteïment es 0.7. La freqüència de tall és

|G'c( j�)Gp(j�)| = 1/k

1/k = 0.2035/0.436 = 0.47 d'aquí obtenim que la K = 2.13

Hem obtingut: a = 0.0436; K = 2.13, per verificar que es compleixen les especificacions grafiam les respostes
a una rampa i a un esglaó.

La funció de transferència a considerar serà

Gc = K(1+a/s) = 2.13(1+0.0436/s)

Gp = 1/ s(s2+4s+5)

GcGp = 2.13(1+0.0436/s) = 2.13s+0.0929

s(s2+4s+5) s2(s2+4s+5)

I la funció en llaç tancat és:

M(s) =  GcGp = _____2.13s+0.0929_____

1+GcGp s4+4s3+5s2+2.13s+0.0929

Les arrels del polinomi característic son:

Eigenvalue Damping Freq. (rad/sec)

−0.0490 1.0000 0.0490

−0.9385 + 0.1804i 0.9820 0.9557 (el sistema s'ens ha alentit molt)

−0.9385 − 0.1804i 0.9820 0.9557 (Hi ha pols dominants reals)

−2.0739 1.0000 2.0739

Les respostes a una rampa i un esglaó del sistema són:
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Això es degut a l'efecte que el 0 ens produeix, hem de mirar de triar una altra a per minimitzar l'efecte d'aquest
0 sobre el nostre sistema.

S'ha variat la a fins a fi de baixar l'esmorteiment per intentar disminuir el sobrepic

La nova funció de transferència és: S'ha establer a = 0.0167

M(s) =  GcGp = ______2.13s+0.05______ (es un sistema de tipus II)

1+GcGp s4+4s3+5s2+2.13s+0.05
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Els valors finals del controlador PI són

K = 2.13, a = 0.0167

Ens compleix: esmorteïment menor de 5% i l'error en entrada rampa ja que

Degut a l'integrador aquest error és 0 (el nostre sistema és ara de tipus II)

6.5. DISSENY CONTROLADORS PD USANT DIAGRAMA DE BODE

La funció de transferència d'un controlador PD en el domini freqüencial és:

Gc(j�) = K(A j�+1)

El disseny de controladors PD consisteix en determinar K i A del controlador fins aconseguir que el sistema
controlat funcioni amb les prestacions desitjades.

El procediment de disseny de controladors PF fent servir el diagrama de Bode consta dels següents passos:

Obtenir el diagrama de Bode de KGp(s) per al sistema sense controlar prenent K=Kp, essent
Kp el gyuany del controlador proporcional calculat a l'apartat 6.3

• 

Determinar la freqüència del marge de fase ��, el marge de fase � i el coeficient d'error del
sistema controlat per un controlador P, a partir del diagrama de Bode de l'apartat anterior.

• 
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d'aquí obtenim les següent dades:

�� = 0.436 rad/sec; MF = 70º; Kv = 5/2.238 = 2.234

Obtenir el diagrama de Bode de KAsGp(s) fins a determinar el valor del producte KA que
proporcioni la freqüència de tall i el marge de fase adequat

• 

Hem d'obtenir el diagrama de Bode de la següent funció:

KAsGp(s) = 2.238*As (el diagrama de Bode d'aquesta funció és

s(s2+4s+5)

per K = 2.23 A =1
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No presenta ni marge de fase ni marge de guany

Per K = 2.23; A =3

no presenta marge de guany i el marge de fase és: 111º

per K = 2.23, A =5
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No presenta marge de guany i el marge de fase és 76º

Per K = 2.23; A = 6

No presenta marge de guany i el marge de fase és 68.4º

S'ha interpolat entre A = 5 i A =6 i s'ha establert una A = 5.8 per obtenir més o menys un marge de fase de
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70º; s'ha obtingut que: KA = 2.238*5.8 = 12.98

Obtenir el diagrama de Bode KA(s+1/A)Gp(s) per a diversos valors de K i A = KA/K. Escollir
els valors adequats de K i A per tal d'obtenir un coeficient d'error estacionari, una freqüència
de tall i un marge de fase desitjat

• 

A l'anterior pràctica vam deduir que perquè complíssim l'espeficicació de l'error necessitàvem una K>5,
llavors agafem el cas limit: K = 5; A = 12.98/5 = 2.6

I en fem el diagrama de Bode de 12.98(s+0.385) = 12.98s + 5

s(s2+4s+5) s(s2+4s+5)

MF = 63º, � = 3.03 rad/sec

Es creuen aquests valors correctes pel compliment de les nostres especificacions.

Per corroborar−ho obtindrem les respostes temporals del sistema amb el controlador enfront una rampa i d'un
esglaó:

El sistema en llaç tancat és  GpGc =  12.98s + 5___

1+GpGc s3+4s2+17.98s+5
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I enfront una rampa la seva resposta temporal és:

Com es pot veure l'error es 1, per tant el sistema també ens compleix aquesta

Especificació

Mirarem perquè la gràfica de la resposta temporal ens dona tan rara:
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Les arrels del polinomi característic són:

Eigenvalue Damping Freq. (rad/sec)

−0.2962 1.0000 0.2962

−1.8519 + 3.6679i 0.4507 4.1089

−1.8519 − 3.6679i 0.4507 4.1089

Veiem que tenim un pol dominant real i que , per tant, la funció se'ns aproxima a una de 1er ordre, per això el
sistema té aquesta resposta tan rara. Tot hi això aquest sistema ens compleix les especificacions desitjades.

6.6. DISSENY DEL CONTROLADOR PID

La funció de transferència del controlador PID en domini freqüencial és:

Gc(j�) = K(j�+a) + KA j�

j�

El procediment de disseny de controladors PID en el domini freqüencial es pot expressar com la combinació
d'un PI més un PD.

ajust del controlador PI, fent A = 0• 
Obtenir el diagrama de Bode de KGp(s) per al sistema sense controlar prenent K = Kp, essent
Kp el guany determinar a l'apartat 6.3

• 

Determinar la freqüència de marge fase, el marge de fase i el coef. Error del sistema controlat
per un controlador P, a partir del diagrama de Bode

• 

Això s'ha fer a l'apartat 6.4. i els resultats han estat els següents:

�� = 0.436 rad/sec; MF = 70º; Kv = 5/2.238 = 2.234

Escollir a = 0.1��• 

Aa = 0.1�� = 0.436*0.1 = 0.0436

ajust del controlador PD, fent a = 0• 
escollir K = Kp• 

la Kp l'hem trobada a l'apartat 3 i és 2.238

Obtenir el diagrama de Bode de KAsGp(s) fins a determinar el valor del producte KA que
proporcioni la freqüència de tall i el marge de fase desitjat.

• 

El producte KA s'ha determinat a l'apartat 6.5 i és 12.98

Obtenir el diagrama de Bode de KA(1+1/A)Gp(s) per a valors de K i A=KA/K. Escollir els
valors adequats de K i A per tal d'obtenir un coeficient d'error estacionari, una freqüència de
tall i un marge de fase desitjat

• 
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Aquestos valors de K i A=KA/K s'han trobat a l'apartat 6.5 i són

K = 5; A = 2.6

ajust del controlador PID• 
Escollir K i A obtinguts a l'ajust del PD i a de l'ajust del PI• 

A= 2.6, K = 5, a = 0.0436

Obtenir el diagrama de Bode de G'c(j�)Gp(j�) on Gc'(s) és la funció de transferència del
controlador sense el factor K

• 

G'c(s) = (s+a) + As = As2+s+a

s s

GpGc'(s) =  s2+As+a = 2.6s2+s+0.0436

s2(s2+4s+5s) s2(s2+4s+5s)

Hem de fer el diagrama de Bode d'aquesta funció, que es aquest:

determinar el nou marge de fase tenint en compte que la nova freqüència de tall es la freqüència
per la qual

• 

|Gc'(j�)*Gp(j�)| = 1/k

No presenta marge de guany i el marge de fase és: 99,5º, la freq de tall és 0.21 rad/sec
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Com que aquest marge que hem obtingut no ens val, intentarem buscar la K que ens faci complir les
especificacions establertes.

PHASE MAG W

−109.2050 0.2422 2.613

−110.0909 0.2374 2.656

Per un MF de 70º obtenim K = 4.23 i W = 2.651

K = 4.23, A = 2.6, a = 0.0436

S'ha mirat la resposta temporal per un esglaó amb aquest PID

G(s) = 4'23(2'6s2+s+0.0436) i s'ha obtingut que:

s2(s2+4s+5)

Com es pot veure, la resposta temporal és molt rara, mirem els pols i zeros de la funció

Eigenvalue Damping Freq. (rad/sec)

−0.0548 1.0000 0.0548

−0.2252 1.0000 0.2252

−1.8600 + 3.3889i 0.4811 3.8658

−1.8600 − 3.3889i 0.4811 3.8658
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Els pols reals ens afecten molt a la resposta, ens l'alenteixen i per això tenen aquesta forma tan rara, hauríem
d'intentar aconseguir reduir una mica el seu efecte variant la a

S'ha agafat la a obtinguda a l'apartat 6.3 ; a=0.1, llavors hem obtingut la següent resposta:

Finalment s'ha determinat quina K ens donaria un sobrepic més pròxim al 5%, s'han anat probant diferents
valors de K i finalment s'ha obtingut que una K de 6.5 ens donaba una resposta temporal com aquesta:

I per una rampa
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Es compleix el requisit de la rampa i el requisit de l'esmorteiment, el del sobrepic es compleix tot hi que
després el sistema ens fa coses rares degut als pols reals, per intentar millorar el sistema es podria utlitzat un
muntatge en cascada amb el controlador PID i el sistema i abans un filtre que aconseguis baixar l'efecte
d'aquests pols reals que tenim tan a prop de l'origen

DISSENY D'UN SISTEMA DE CONTROL REAL (I)

Objectius• 

Amb aquesta pràctica es pretén realitzar la indentificació d'un procés físic real, amb característiques d'una
forta no−linealitat i de difícil modelatge amb la finalitat d'obtenir un model matemàtic discret que descrigui la
seva dinàmica. El sistema sobre el qual farem la identificació es troba representat en la figura 1.

2. Descripció del sistema

Es tracta d'un motor de corrent contínua amb una hèlix que impulsa el vent cap una placa lleugera i rígida (de
porexpan), disposada verticalment en estat de repós i que per acció del vent impulsat, pot moure's entorn de
l'eix horitzontal a la qual està fixada, describint un cert angle respecte la vertical.
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L'entrada del sistema serà la tensió aplicada al motor i la sortida, la tensió que ens dóna un potènciometre.

El sistema es pot desglossar en diversos subsistemes connectats en sèrie, de manera que la funció de
transferència global la podrem obtenir multiplicant les funcions de transferència parcials. Fent això s'obté la
següent definició del sistema global:

G(s) = Vpotenciòmetre

Vmotor

Els subsistemes presents en aquest procés són el motor de CC, les hélices, el pèndol amb la planxa de
porexpan i el potenciómetre. Podent−los esquemetitzar de la forma que mostra la figura 2

Motor CC: respòn a un sistema de primer ordre• 
Hélices: Es consideren que tenen un comportament proporcional• 
Pèndol: La pressió de l'aire que provoquen les hélices, provoca un moment sobre el centre màssic de
la planxa, provocant el balanceig. El tipus de comportament d'aquest subsistema vindrà donat pel
conjunt de moments que actuen sobre la planxa.

• 

Potenciòmetre: Es un amplificador operacional i té un comportament linial.• 

Fonaments• 

És molt important obtenir els models dels processos ja que la majoria de tècniques de control digital avançat
estan basades en un model del procés a controlar. Les tècniques d'obtenció dels models dels processos, en
general, segueixen dos camins:

Si la dinàmica de model pot ser raonablement modelada mediant equacions diferencials, podem
obtenir un model continu del procés en el que, habitualment, faltarà determinar certs paràmetres. Per
obtenir aquests ens serà suficient conèixer la resposta temporal a una entrada graó unitari o obtenir
diagrames de Bode

• 

Si la dinàmica del model és molt difícil de modelar en termes d'equacions diferencials, podem optar
per determinar directament el model del procés. Per fer−ho un primer pas seria establir una primera
estimació dels ordres i del retard del nostre model i, posteriorment, aplicar alguna tècnica d'estimació
paramètrica per obtenir els paràmetres concrets del model.

• 

Nosaltres ens trobem en el primer cas, per tant, el que farem serà trobar les equacions físiques del sistema.

Modelat del sistema amb equacions físiques• 

A partir del següent diagrama de forces plantejarem les equacions dels moments que actuen en el subsistema
Pèndol+Planxa de porexpan:
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Les lleis de la mecànica ens diuen, pel principi d'Alembert:

�o Moments − I*� = 0

En aquest cas, segons el diagrama de la pàgina anterior, els moments que actuen són:

Mpes = m*g*Rcm* sin �

Mfr = f*�

Maire = Fa*cos �*Rcm

Substituint ens queda que:

m*g*Rcm* sin � + f*� − Fa*cos �*Rcm + I*� = 0 (EQ−1)

Sabem que el moment d'inèrcia d'una barra és

I = m*Rcm2/12

Per tant substituint I a l'expressió ens queda l'equació que modelitza el sistema

m*g*Rcm* sin � + f*� − Fa*cos �*Rcm + �*m*Rcm2/12 (EQ−2)

On:

Rcm Radi del centre de masses (en m)

g Acceleració de la gravetat (m/s2)

I Moment d'inèrcia d'una barra (kg*m2)

Fa Força de l'aire (N)

f Força de Rossament (N)

� Acceleració angular de la barra (rad/ s2)
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m Massa de la planxa porexpan (Kg)

Tenim els següens valors:

g = 9'81 m/ s2

m = 22 g = 0'022 Kg

Problema: No coneixem els paràmetres f,Fa i Rcm.• 

En general en quansevol sistema que volguem identificar ens trobarem amb una sèrie de paràmetres
desconeguts. Aquests poden ser classificats en 2 grups:

Paràmetres que són fàcilment mesurables, en el nostre cas Rcm• 
Paràmetres que són més dificils o impossibles de mesurar, ja sigui perquè la seva mesura només es
pot fer amb aparells sofisticats o simplement, no podem accedir−hi, en el nostre cas Fa i f.

• 

Per tal de poder fer la identificació dels paràmetres desconeguts es farà el següent

Trobar el model lineal a partir de l'equacio (EQ − 2) que ens defineix el model no linial.• 

Fer porces en el laboratori per tal de determinar paràmetres d'un sistema de segon ordre (�n, �, K)• 

5. Linealització del model

Donada l'equació diferencial (EQ − 2) que modelitza el sistema planxa−pèndol, es demana linealitzar−la
per angles petits (al voltant de zero). Aquesta imposició ens permet donar com a vàlida l'aproximació sin �
= � i cos � = 1

• 

m*g*Rcm* sin � + f*� − Fa*cos �*Rcm + �*m*Rcm2/12 = 0 fent les substitucions:

m*g*Rcm*� + f*� − Fa*Rcm + �*m*Rcm2/12 = 0

Determinar la funció de transferència a llaç obert �(s) / Fa(s) a partir del model lineal.• 

L'expressió que s'obté serà l'equació EQ−3. Completeu−la

m*g*Rcm*� + f*� − Fa*Rcm + �*m*Rcm2/12 = 0 (fent transformades de Laplace)

m*g*Rcm*�(s)+ f*s�(s) − Fa(s)*Rcm + s2�(s)*m*Rcm2/12 = 0

�(s) =  Rcm______________

Fa(s) s2*m*Rcm2/12 + f*s + m*g*Rcm

�(s) =  12/(Rcm*m)_______

Fa(s) s2 + (12*f/m*Rcm2)s+ 12g/r

Observeu que la funció de transferència obtinguda es correspon amb un sistema de segon ordre del
tipus:

• 

78



Y(S) =  K*�n2_____

R(S) s2 + 2�n*�s+ �n2

Així doncs, si arribem a identificar els paràmetres del sistema (�n, K, �) podem trobar els paràmetres
físics desconeguts i per tant acabarem obtenint l'expressió del model del sistema.

• 

A partir d'aquesta equació podem relacionar els paràmetres del sistema de segon ordre i relacionar−los amb
els paràmetres físics

�n2 = 12g/r �n = (12g/r) 1/2

2�n*� = 12*f/m*Rcm2 � = 6*f/(m*Rcm2(12g/r) 1/2)

K�n2 = 12/(Rcm*m) K =1/mg

6. Determinació dels paràmetres del model mitjançant tècniques d'identificació de Sistemes

Un cop trobat el model lineal del subsistema del pèndol, el que volem ara és determinar els paràmetres que no
coneixem (f,Fa,Rcm). Per fer−ho hem vist que primer ens cal trobar els valors (�n, �, K). Sabem que aquests
valors els podem trobar coneixent algunes de les característiques de la resposta temporal del sistema a un
esglaó.

Per tal de trobar aquesta informació s'han fet probes sobre el sistema físic global (tots els subsistemes).

Hem aplicat a t=0.5 s, una tensió graó de 4 V, a l'entrada del motor, obtenint a la sortida del
potenciòmetre la resposta que mostra la figura 4 (NO REPRODUÏDA AQUÍ)

• 

Observacions: Sobre el sistema físic nosaltres només podem obtenir la sortida del potenciómetre quan li
entren una tensió al motor. Per tant estem obtenint la resposta del sistema global que correspon a la fig.2, en
canvi a nosaltres ens interessa identificar els paràmetres a partir del subsistema del qual he obtingut el model
linear, el subsistema pèndol + planxa. En aquest subsistema hi entra una força (la força de l'aire Fa) i s'obté
com a sortida un angle �. Aixi doncs, l'esquema de la figura 4 és la resposta a:

Vpotenc =  Fa *  � * Vpotenc

Vmotor Vmotor Fa �

Segons les especificacions donades a l'apartat 2 sobre el comportament de cada un dels subsistemes, podem
expressar:

Vpotenc =  K1e−Tds *  _K2*K3* �n2__

Vmotor Ts+1 s2+2��ns +�n2

Per tal de no complicar la identificació del sistema considerarem que la dinàmica del motor és molt més
ràpida que la de la planxa de porexpan, el qual significa que els dos pols complexes són dominants. Fent
aquesta consideració l'expressió anterior ens queda de la forma:

Vpotenc =  K1K2*K3* �n2__ * e−Tds

Vmotor s2+2��ns +�n2
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K3 és la constant que ens relaciona l'angle (en rad) amb la tensió i que mesurant−la en el laboratori
ens ha donat un valor de K3 = 6,37

• 

K1 i K2 les trobarem a partir de l'estudi de la resposta de la figura4• 

En el nostre sistema global l'expressió de (EQ−4) seria substituida per l'expressió de (EQ−5)

Nota: Com aclariment direm que tot i veure a partir de la figura 4 que tenim un sistema de tercer ordre, per la
forma de la resposta, nosaltres l'aproximarem a un sistema de 2on, segons pols dominants ja que són els
sistemes que millor coneixem.

Identificació: Sobre la resposta de la fig.4 veiem que podem extreure els valors dels següents paràmetres:

Tpic = 1'1 sec Temps de pic

Mpic = 4'12 V Magnitud del sobrepic

Td = 0'25 sec Temps de retard

La sortida del sistema controlat se'ns estabilitza a 4'1 V (aprox)

Com es pot observar el sobrepic és molt baix, de l'ordre del 3%. Quan ens trobem amb aquests casos el
paràmetre de sobrepic i temps de pic no ens serveixen per identificar el sistema. La identificació serà molt
més bona si utilitzem el paràmetre temps de pujada, que podem extreure de la figura 4 i que té un valor de:

Tpj = 0'12 sec Temps de pujada (del 10% al 90%)

La fòrmula per obtenir el temps de pujada és

Tpj*�n = 1−0'4167�+2'917�

A partir dels valors anteriors extrets del gràfic de la resposta temporal de la fig.4 trobar els paràmetres (�n,
�, K) Corresponent a la funció de transferència de 2 ordre(EQ−5).

• 

K = K1K2K3. Podeu utilitzar les fórmules del temps de pujada per trobar �n i el sobrepic per calcular
l'esmorteïment

A partir del sobrepic determinarem l'esmorteïment del sistema• 

SP = exp(−��/(1−�))

0'03 = exp(−��/(1−�) 1/2) ln 0'03 = −��/(1−�) 1/2

2*ln 0'03 = −��/(1−�) Operant

0.7106 = �/(1−�)

1.7106� = 1 � = 0.765 (Esmorteïment del sistema)

Cal tenir en compte que la � que hem trobat no és la real, s'hauria d'utilitzar algun altre paràmetre que no el
sobrepic. L'esmorteiment real del sistema s'acostarà molt més a 1. A partir del temps de pujada determinarem
la freqüència del sistema
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Tpj*�n = 1−0'4167�+2'917�

0'12*�n = 1−0'4167�+2'917� = 1−0'4167*0.765 + 2'917*0.7652

0'12*�n = 2.387 �n = 19.89 rad/sec

la K total la obtindrem comparant valor final de sortida i valor d'entrada• 

K = Vout = 4'1 = 1.025

Vin 4

A partir dels paràmetres anteriors i la funcio de transferència trobada (EQ−3) identificar els paràmetres
K1,K2,f,Rcm

• 

A partir del que hem trobat abans sabem:• 

�n = (12g/r) ½ �n = 19'89 rad/sec

� = 6*f/(m*Rcm2(12g/r) 1/2) � = 0'765

K2 =1/mg

Substituint determinem tots els paràmetres que no sabem• 

19'89 = (12g/r) ½

395.6 = (117.7/Rcm) Rcm = 0.298 m

K2 =1/mg = 1/0.022*9.81 K2 = 4.633

K1K2K3 = 1.025

K1*4.633*6.37 = 1.025 K1 = 0.0347

0.765 = 6*f/(m*Rcm2(12g/r) 1/2)

0.585 = 36*f2/(m2*Rcm4*12g/r)

0.585 = 36*f2/(0.02220.2984*395.56)

f2 = 2.4387e−005 f = 0.0049

Donar l'expressió de la funció de transferència (EQ−3) amb els valors dels paràmetres• 

�(s) =  12/(Rcm*m)_______ =  1833_______

Fa(s) s2 + (12*f/m*Rcm2)s+ 12g/r s2 + 30.41s + 395.6

Donar l'expressió de la funció de transferència (EQ−5)• 

Vpotenc =  K1K2*K3* �n2__ * e−Tds =  405.5_______* e−0'25s
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Vmotor s2+2��ns +�n2 s2 + 30.41s + 395.6

7− Simulació del model lineal obtingut mitjançant SIMULINK

Arribats a aquest punt ja tenim el model del sistema físic real. Per tal de veure si el model calculat es
comporta d'igual forma que el físic caldrà entrar en una fase de testeig del model.

Com a comprovació de que el model lineal obtingut és vàlid es demana fer una simulació del sistema obtingut
amb SIMULINK. Representeu la sortida del sistema per una entrada graó de 4V i comproveu si es correspon
amb la resposta temporal de la fig 4

Per una entrada de 4V graó unitari la resposta ha estat de:

Comparant aquesta gràfica amb la que ens donen a l'apartat 4 veiem que són força semblants tot hi que a la de
la fig−4 hi ha moltes discontinuitats. Es pot veure que l'instant en que es produiex el sobrepic és a 0.97 s, i ens
havien dit que apareixia a 1.1 s això es l'error que hi ha al agafar la linialització dels paràmetres i a utilitzar la
formula del sobrepic, que es molt inexacte perque el que ens apareix es molt petit.

La senyal s'estabilitza a 4'1 V a més o menys 1.2 sec en canvi en l'altre hi ha certes oscilacions i s'estabilitza
pels volts d'1.6 sec.

8− Simulació del model no linealitzat i comparació amb el model linealitzat

de la mateixa manera que abans hem simulat el model lineal per SIMULINK, ara es demana simular amb
aquest paquet el model no lineal.

Implementar el model no lineal en blocs SIMULINK a partir de l'equació diferencial no lineal.• 
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m*g*Rcm* sin � + f*� − Fa*cos �*Rcm + �*m*Rcm2/12 = 0

valors obtinguts: m = 0.022 kg, Rcm = 0.2976 m, f = 0.0049, g = 9.81 m/s2

Substituint queda:

0.0642* sin � + 0.0049*� + 0.00016237*� = 0.2976*Fa*cos � arreglant−ho

� + 30.18� + 395.15 sin � = 1833*Fa* cos �

Aquesta es la funció que tenim per introduirla en el SIMULINK

En el simulink es fa la simulació del sistema següent:

No es correspon exactament amb el model trobar a l'apartat lineal, en aquest el sobrepic és quasi nul, es pot
dir que l'esmorteïment del sistema és de 1 aproximadament.
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Tot hi aixó es considera que el model lineal és vàlid per angles petits

A partir del diagrama en SIMULINK que heu representat, trobar quines tensions cal aplicar al
motor per tal d'obtenir els següents angles de sortida

• 

Sabem que la constant del potenciòmetre és 6.37 per tant podem comparar amb voltatges

�out Vpot Vin

10 1.57 1.32

20 3.14 2.87

30 4.71 4.85

45 7.07 10.9

25 3.93 3.85

Utilitzant el model no lineal els resultats aproximats són aquests, es pot veure que el Vin a 45º es separa
moltíssim del de 30º

Comparar les respostes temporals entre el model lineal i el no−lineal. Per fer−ho es demana que
prenent els Vin trobats de la taula sobre el model no lineal s'apliquin aquests valors com a entrada
graó del sistema SIMULINK del model lineal. Comparar les sortides dels angles i les respostes
gràfiques

• 

Ara s'ha agafat el model no lineal i s'han obtingut els angles a partir del voltatge

�out Vpot Vin (no Lin) Vin (Linear)

10 1.57 1.32 1.53

20 3.14 2.87 3.06

30 4.71 4.85 4.59

45 7.07 10.9 6.89

S'han comparat les gràfiques del sistema linial i del no−linear per tots els valors de la taula

Angle 10º
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Angle 20º

Angle 30º
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angle 45º

A partir dels resultats anteriors, dir a partir de quins angles el sistema deixa de ser lineal• 

Veient els resultats podem apreciar que a una franja entre 30º − 45º el sistema ens deixa de ser lineal. Podem
intentar averiguar més punts per determinar més exactament on hem de deixar el sistema lineal.

�out Vpot Vin (no Lin) Vin (Linear)

30 4.71 4.85 4.59

31.5 4.95 5.23 4.83

33 5.18 5.75 5.05

35 5.5 6.42 5.37
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A partir dels 32º Aproximadament el sistema deixa de ser lineal i el nostre model lineal ja no ens he serveix.
Això es degut a què les simplificacions ja no ens funcionen:

Cos 32 0.85 cos 0 = 1 (aproximació ja molt dolenta)

Sin 32 0.53 � = 0.56

DISSENY D'UN SISTEMA DE CONTROL REAL (II)

− Enunciat del problema de control• 

En aquesta pràctica dissenyarem un sistema de control per tal de controlar la posició de l'eix del sistema
format per la planxa i el ventilador presentat en la pràctica anterior..

Donar l'expressió de la funció de transferència (EQ−5)• 

Vpotenc =  K1K2*K3* �n2__ * e−Tds =  405.5_______* e−0'25s

Vmotor s2+2��ns +�n2 s2 + 30.41s + 395.6

A partir de la funció de transferència que varem obtenir de la pràctica 7

Les especidicacions de disseny que s'han fixat per la resposta temporal del sistema controlat són les següents:

La resposta del sistema controlat ha de presentar un sobrepic inferior al 5%• 
L'instant en què es produeix el sobrepic ha d'ésser igual a 0.1 sec.• 
El sistema dominant presenta 2 pols dominants• 
L'error estacionari davant una consigna graó ha d'ésser igual a 0• 

Es demana
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Determinar quina ha d'ésser la posició dels pols del sistema controlar per tal de complir les
especificacions de disseny

• 

Determinar quin és l'ordre del sistema i el seu error estacionari davant d'una entrada en forma de
graó i en forma de rampa.

• 

a)

Per les quatre condicions següents ens imposen els seguents requeriments:

SP < 5% d'altres pràctiques sabem que � > 0.692• 
Tp < 0.1 sec• 

Tp =  � �n =  � =  � > 44'43

�n*(1−�)1/2 Tp*(1−�)1/2 0.1*0.707

El sistema presenta 2 pols dominants• 

Podem muntar l'equació del sistema de 2on ordre a partir de �n i �

K1K2*K3* �n2__ =  __ 1.025*44'442_____ = 2024_____

s2+2��ns +�n2 s2 + 2*0.7*44'44s + 44'42 s2 + 62'2s + 1975

Solucionant el denominador veiem que els pols dominants són:

31'1 + 31'75j | Sabem que perquè un pol sigui recessiu cal que estigui almenys a una

31'1 − 31'75j | distància de 10 respecte els pols dominants

300 Establim el pol a una distància més o menys 10 vegades els pols dominants

L'error estacionari davant un graó 0• 

Per satisfer−ho cal que el tipus del sistema sigui I, que presenti 1 integrador en la seva funció de transferència
en llaç obert.

b)

Per determinar−ho podem entretenir−nos a fer el límit o a utilitzar la susodicha taula dels errors en funció del
tipus del sistema

Graó : Per un sistema de tipus 0, l'error és 1/1+Kp

En el nostre sistema:

Kp = Lím Gp(s) = K = 1'025

s−>0

Ess = 1/1+Kp = 1/2.025 = 0.49
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Rampa: Per un sistema de tipus 0, l'error és infinit, no ens acostem mai a la rampa.

8.2. Disseny del controlador PID fent servir el mètode d'assignació de pols

El controlador que es proposa utilitzar per a aconseguir controlar la inclinació de la planza és un controlador
PID

Gc(s) = Kp + Ki/s + Kds

L'ajuste d'aquest controlador es farà fent servir el mètode d'assignació de pols simple

El disseny de controladors mitjançant el mètode d'assignació de pols simple consisteix en determinar el
controlador a partir de la condició de què el sistema controlat tingui els pols en el lloc desitjat, sigui:

Gc(s) = Nc(s) / Dc(s)

La funció de transferència del controlador i sigui:

Gp(s) = Np(s) / Dp(s)

La funció de transferència del procés a controlar, llavors la funció de transferència del sistema controlat
suposant que la realimentació és unitària valdrà:

T(S) =  Nc(s)*Np(s)______

Dc(s)Dp(s) + Nc(s)Np(s)

A partir de les especificacions de disseny determinarem la posició dels pols del sistema controlat i per tant el
polinomi denominador P(s) de la funció de transferència del sistema en llaç tancat T(s). Igualment el polinomi
desitjat amb el polinomi a ajustar determinarem els paràmetres del controlador

Aquesta equació s'anomena equació diofàntica.

Es demana determinar:

Determinar l'expressió de l'equació diofàntica prenent com a controlador un controlador PID i com a model
del sistema ventilador + planxa obtingut de la pràctica anterior. (nota: per al disseny del controlador no
tindrem en compte el retard pur que s'observa que presenta el sistema, ja el considerarem més endavant).

• 

Determinar quina és l'expressió del denominador desitjat P(s) a partir de les especificacions de disseny del
problema i tenint en compte que el sistema controlat presenta dos pols complexes conjugats dominants

• 

Plantegeu els equacions de disseny que se'n deriven• 
Resoleu el sistema d'equacions obtingut per a determinar els valors dels paràmetres del controlador PID:
Kp, Ki i Kd

• 

a)

De les funcions de transferència anteriors:

Gc(s) = Kp + Ki/s + Kds = (Kds2 + Kps + Ki) / s

Gp(s) = 405'5/(s2+30.3s+395.6)
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Gd(s) = Gc(s)*Gp(s) = 405'5(Kds2 + Kps + Ki)/( s3+30.3s2+395.6s)

A partir d'aquí obtenim la funció de transferència en llaç tancat:

T(S) =  Nc(s)*Np(s) =  405'5(Kds2+Kps+Ki)______________

Dc(s)Dp(s)+Nc(s)Np(s) s3+(30'3+405'5Kd)s2+(395'6+405'5Kp)s+405'5Ki

b)

A partir del polinomi que hem obtingut a l'apartat 8.1:

Multipliquem els pols complexe conjugats dominants i el pol real recessiu.

P(s) = (s+300)*(s2 + 62'2s + 1975) = s3 + 362'5s2 + 20635s + 592500

El pol està a una distància d'aproximadament 10 dels complexes, per tant és recessiu.

c)

Igualant els polinomis P(S) i el denominador de T(S) obtenim l'equació diofàntica:

s3 + 362'5s2 + 20635s + 592500 = s3+(30'3+405'5Kd)s2+(395'6+405'5Kp)s+405'5Ki

D'aquí en deriven 3 equacions independents:

362'5 = 30'3+405'5Kd

20635 = 395'6+405'5Kp

592500 = 405'5Ki

d)

Resolent les 4 equacions obtenim els següents valors dels paràmetres del controlador PID

Kd = 332'2/405'5 = 0'82

Kp = 20239'4/405'5 = 49'9

Ki = 592500/405'5 = 1461

8.3. Simulació del sistema controlat amb el SIMULINK

Una vegada dissenyat el controlador es demana comprovar el seu funcionament en simulació. Per això es
proposa utilitzar el simulador SIMULINK

Simular el funcionament del sistema de control fent servir com a model de simulació de la planta el model
ventilador−planxa lineal obtingut en la pràctica anterior. Es compleixen les especificacions de disseny?

• 
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La gràfica de la resposta temporal és la següent:

Com podem apreciar la resposta no compleix les especificacions de disseny perquè te un sobrepic molt
superior al 5%, això es degut als 0s que tenim en el denominador.

Simular el funcionament del sistema de control utilitzant el model no lineal obtingut en la pràctica
anterior. Qué s'observa? Proveu el comportament del sistema de control per diferents valors de
consigna. Per a quin rank de consignes funciona millor el sistema de control, perquè?
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S'han fet les proves per diferents consignes i el sistema ens ha sortit inestable per a totes les consignes que
hem donat. Per tant, el controlador que hem obtingut pel model lineal no ens funciona pel model no lineal.

Això es degut a què el model lineal no s'ajusta totalment al no−linial. Les simplificacions que hem fet i el fet
d'utilitzar el sobrepic per determinar la funció de transferència del sistema ens fa que els pols no estiguin al
lloc adequat i per tant, el sistema se'ns torni inestable: Segurament el pol que hem suposat a S+300 està situat
en la regió inestable.

El controlador no funciona per a cap rang de consignes

8.4. Implementació del controlador PID

Suposem que ara volem implementar el controlador PID físicament per a controlar el ventilador. Tenim dues
opcions:

Implementació analògica del controlador PID• 

La implementació analògica del sistema consisteix en determinar un circuit electrònic que tingui una funció
de transferència com la del PID. L'ajust del PID consisteix en l'ajust dels paràmetres dels components del
circuit electrònic. En aquesta pràctica es proposa el circuit electrònic de la figura per a implementar el PID:

Obtenció de la funció de transferència d'aquest circuit

Amp.Op 1: G1(s) = −R5/R6 Proporcional

Amp.Op 2: G2(s) = −1/C1R7s Integrador

Amp.Op 3: G3(s) = −R8C2s Derivador

Amp.Op 4: Gt(s) = −R1*G1(s) − R1*G2(s) − R1*G3(s)

R2 R3 R4
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Gc(s) = R5R1 +  R1 + R1R8C2s

R2 R6 C1R7R3s R4

El nostre controlador PID té la següent funció de transferència:

Gc(s) = 0'82s + 49'9 + 1461/s

Suposicions:

1− C1 = 1nF, C2 = 1�F (condensadors físicament possibles)

R2 = R3 = R4 = R1 = 330 K�• 

Llavors obtenim els següents paràmetres:

0'82 = R8/10000000 R8 = 820 K�

1461 = 109/ R7 R7 = 685 K� Aprox. 680 K�

49'9 = R5/R6 R5 = 1 M�; R6 = 20K�

Aquestes resistències pertanyen a la sèrie E−12, per tant es poden trobar en un laboratori d'electrònica. La
seva tolerància és d'un 10%.

Implementació analògica del controlador PID

En l'actualitat resulta més fàcil implementar el PID usant un ordinador. Ens fa falta una tarjeta d'adquisició de
dades que ens faci la conversió analògic−digital i digital analògic i el programa que ha d'executar l'ordinador
per comportar−se com un PID, tal com s'indica a la figura

Equació discreta del PID• 

La funció de transferencia d'un PID en el temps continuu es descriu com:

G(s) = Kp + Kds + Ki/s

Kp Es un guany constant Kp, no es pot realitzar una resolució infinita

Kd aproximem la derivada de la següent manera:

df(t) = 1 * [f(KT) − f((K−1)T)]

d(t) T

Aplicant la transformada z ens queda:

Gd(s) = Kd (z−1)/Tz

Ki Aproximem la integral utilitzant la regla dels trapezis

"f(Kt) = "f((K−1)t) + 0'5T [ f(KT) + f((K−1)T)]
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Aplicant la transformada z ens queda:

Gi(z) = Ki*T(z+1)/2(z−1)

La funció de transferència total del PID discret ens queda:

Gc(z) = (Kp + TKi/2 + Kd/T)z2 + (Tki/2 − Kp − 2Kd/T)z + Kd/T

z(z−1)

T = temps de mostreig

Kp = Constant proporcional PID en domini continu

Kd = Constant derivativa PID en domini continu

Ki = Constant integral PID en domini continu

Determinació dels paràmetres del PID digital• 

Substituim pels nostres paràmetres:

Kp = 49.9; Kd = 0.82; Ki = 1463

Obtenim:

Gc(z) = (49.9 + 731.5T + 0.82/T)z2 + (731.5T − 49.9 − 1.64/T)z + 0.82/T

z(z−1)

Aquest controlador seria marginalment estable perquè les arrels del polinomi característic estàn a dins del
cercle unitari |z| = 1 , però n'hi ha una a (z−1)

8.5. Efecte dels zeros del controlador: Assignació de pols completa

Si observem la funció de transferència del sistema controlat obtinguda a l'apartat 8.2 podem veure que si bé el
denominador és aquell que nosaltres haguem fixat per disseny P(S) el numerador ha canviat Respecte a funció
de transferència del sistema sense controlar, per tant si obserbessim la resposta del sistema controlat veuríem
que no es correspon exactament amb la resposta desitjada. Això es deu a que hem afegit al numerador del
sistema controlat un zero respecte a la funció del sistema sense controlar. Per evitar aquesta addició d'un zero
que fa que la resposta no es correspongui exactament amb la desitjada hem de variar lleugerament l'estructura
del sistema de control. Simplement restructurant la posició del controlador dins del sistema de control tal com
s'indica es pot comprovar que si recalculem la funció de transferència del sistema controlat s'obté:

T(S) =  ____Np(s) _ =  ________ 405'5__________________

Dc(s)Dp(s)+Nc(s)Np(s) s3+(30'3+405'5Kd)s2+(395'6+405'5Kp)s+405'5Ki

Aquest tipu de controlador s'anomena d'assignació de pols completa, perque només modifica el
denominador del procés sense fer variar el numerador.
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8.6. Efecte del inestabilitzador del retard

Si tenum en compte el retard present en el model del sistema observarem al simular el sistema controlat que el
seu efecte és el desestabilitzar el sistema.

Si determinem la funció de transferència del sistema realimentat veurem que el retard apareix com un terme
més del denominador. Normalment l'efecte d'aquest terme és desestabilitzar el sistema realimentat.

T(S) =  Gp(s) * e−std _

1+Gp(s)*e−std

Per a poder estudiar l'efecte inestabilitzador del retard del sistema utilitzarem els diagrames de Bode. Es
demana:

Fent ús del diagrama de Bode determinar el marge de fase del sistema sense tenir en compte el retard i fent
ús del lloc d'arrels determineu la Klímit per aquest sístema.

• 

Fent us del diagrama de Bode determinar el marge de fase del sistema si tenim en compte el retard i fent us
del lloc d'arrels determineu la Klímit per aquest sistema.

• 

Veient els resultats dels apartats anteriors què podem afirmar sobre l'estabilitat del sistema de control d'un
sistema amb retard.

• 

a)
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Agafem la funció de transferència del ventilador solament:

Gp(s) =  405'5______ realimentat:  405'5____

S2+30'3s+395'6 S2+30'3s+801'1

Fent el diagrama de Bode:

No cal utilitzar el lloc d'arrels per determinar la K límit. Sapiguent que és un sistema amb només 2 pols i cap
zero, i mirant les trazes de Bode podem veure que mai es creuarà la línia dels −180º, per tant, la klímit serà
infinit.

b)

Per fer−ho necessitem utilitzar l'aproximació de Padé. Aquesta aproximació ens diu:

e−std = 1 − tdS/2

1 + tdS/2

Llavorens la funció de transferència ens queda:

Gp(s) =  405'5*(1 − tdS/2)____ = 405'5−202'25Tds___________

S2+30'3s+395'6*(1 + tdS/2) ½TdS3+ (1+½Td)s2+(30'3+ 15'7Td)s+395'6

Td = 0'5 El retardo és de 0'5 sec en el sistema

Llavors sustituint la funció de transferència en obert ens queda:
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Gp(s) =  1622 − 404'4s___

s3+5s2+152'6s+1583

Per intentar trobar la Klímit, buscarem quan els 3 pols són positius amb un lloc d'arrels per intentar aproximar
la Klímit:

Advertencia La igualtat de Padé només serveix per a freqüències petites, a freqüències grans no ens serveix
degut a qué es una sèrie de Taylor i a valors grans l'error que cometem es molt gran i no ens serveix. Per tant
el diagrama de Bode només es valid per a baixes freqüències (entre 0'1 i 10 Hz aproximadament)
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Veiem que sempre és inestable per qualsevol K positiva. Per tant el que ens fa el retard es desestabilitzar−nos
el sistema.

8.7. EL PREDICTOR SMITH

La funció de transferència amb el predictor Smith, és

T(S) = Gp(s)Gc(s)*e−Tds

1+Gp(s)Gc(s)

Calculant−la segons els nostres valors

Gp(s) =  405'5 __ Gc(s) = 0'82s2+49'9s+1461

s2+30'3s+395'6 s

T(S) = 332'5s2 + 20234s + 592450*e−0'5t

s3 + 362.8s2 + 20630s + 592500

Fent us del simulink amb el PID de l'apartat 8.2, comprovar que s'obté la mateixa resposta que a
l'apartat 8.3 llevat d'un retard.
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Disseny del controlador PID fent servir el mètode de Ziegler Nichols

En aquest apartat, ajustarem els paràmetres d'un controlador PID analògic que ens permeti controlar el procés
seguint el procediment empíric d'ajust en llaç tancat de Ziegler−Nichols.

El procediment consisteix inicialment en col.locar un controlador de tipus proporcional P, amb un guany petit,
i obtenir la resposta del sistema controlat a una consigna de tipus graó. A continuació, augmentarem el guany
del controlador i tornarem a aplicar un graó. Aquest procés s'anirà repetint fins a obtenur una resposta
oscil.latòria mantinguda del sistema controlat. Una vegada aconseguida aquesta oscil.lació mantinguda,
anotarem el guany crític que l'ha produïda Kpc així com el període de l'oscil.lació Tc

Segons Ziegler−Nichols el paràmetres del controlador són:

K Ti Td

PID
Controler

0'6Kpc 0'5*Tc 0'125Tc

PI Controler 0'45Kpc Tc/1.2

P Controler 0'5Kpc

On la funció de transferència el controlador PID és:

Gc(s) = K(1+ 1/TiS + Tds)

Es demana:
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Fent us del simulink i del model de la planta del sistema ventilador−planxa i sense tenir en compte el retard
determineu els paràmetres d'un controlador PID pel mètode de Ziegler−Nichols que us acabem de
presentar:

• 

S'han anat provant diferents valors de K i s'ha aconseguit aquesta resposta per una K de:

K = 2

T = 0.1 sec

Fent us del SIMULINK comproveu que el controlador PID aconsegueix controlar adequadament el sistema
format pel  ventilador−Planxa .

• 

El sistema controlat segons la K i el T, el PID ens queda així

K = 1'2; Ki = 16; Kd = 0.0125

La resposta pel sistema controlat és la següent amb el PID de Ziegler−Nichols:

Podem veure el que el sistema controla satisfactòriament el sistema, nosaltres podríem variar els paràmetres

101



del controlador PID per obtenir un millor controlador:

Si ara es te en compte el retard, fent us del que hem vist en aquesta pràctica com eleminarieu el seu efecte
de forma que no haguéssiu de redissenyar el PID obtingut per Ziegler−Nichols.

• 

Per fer−ho hauríem d'utilitzar el predictor d'Smith, ja que aquest ens treu el factor de retard del denominador i
fa que el sistema no se'ns inestabilitzi. La nova funcio de transferència en llaç tencat seria:

T(s) = Gp(s)*Gc(s)*e−Std

1+Gp(s)Gc(s)

També es podria intentar utilitzar el mètode de Ziegler−Nichols en llaç obert enlloc del que utilitzem que és
en llaç tancat. Funciona si T/L > 4, en el nostre cas no funcionaria.

Quina avantatge creus que presenta un mètode empíric com el de Ziegler Nichols davant de mètodes
algebraics com el d'assignació de pols:

• 

Els avantatges són

No cal conèixer la funció de transferència del sistema per aplicar Ziegler−Nichols• 
Es poden utilitzar per controlar sistemes que tinguin un ordre molt més gran que 2, això ens portaria
molta feina algebraicament en canvi així només es basa en fer probes al sistema i no perdre temps
amb càlculs.

• 

Pot utilitzar−se per programar els PIDs autoajustables, els controladors autoajustables realitzen ells
mateixos les probes i llavors s'autoajusten amb els valors de Ziegler−Nichols. Llavors si volem
canviar−los podem regular−los nosaltres.

• 

PART TEÒRICA DE L'ASSIGNATURA

Apunts Bàsics de Regulació Automàtica

Diagrames de Block i funcions de transferència

Funcions de Transferència

G(s) = Y(s)/U(s) sortida Y(s) = L[y(t)] entrada U(s) = L[u(t)]

Normalment la funció de transferència s'obté a partir de l'equació diferencial

(sn + an−1sn−1 + ... + a1s + a0) Y(S) = (bmsm + bm−1sm−1 + ... + b1s + b0) U(s)

G(s) = Y(s)/U(s) = bmsm + bm−1sm−1 + ... + b1s + b0 / sn + an−1sn−1 + ... + a1s + a0

Propietats de la funció de transferència

definida solament per un sistema linial invariant amb el temps• 
Es la transformada de Laplace de la resposta a l'impuls• 
Relació entre la transformada de Laplace de la sortida i la de l'entrada• 
Totes les condicions inicials del sistema són iguals a 0• 
Es independent de l'entrada del sistema• 
S'expressa en la variable complexa s de Laplace• 
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Es estrictament pròpia si n > m, pròpia si n = m i impròpia si n < m• 

Polinomi característic

Es defineix com la equació que s'obté al igualar el polinomi de G(s) a 0

sn + an−1sn−1 + ... + a1s + a0 = 0

Ens serveix per determinar l'estabilitat dels sistemes

Diagrames de blocks

S'utilitsen per a modelitzar sistemes. Estudiar les relacions de causa−efecte dels sistemes

Si es coneixen les lleis matemàtiques que gobernen el sistema

Els elements bàsics d'un diagrama de blocks són:

Diagrama de Blocs model en realimentació

Llaç obert
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Es agafar la funció de transferència sense considerar la realimentació

G(S) = Y(S) / E(S) = Gc(s)*Gp(s)

Llaç tancat

Es considera la realimentació llavors la funció de transferència en llaç tencat és

M(S) = Y(S) =  G(S)____

R(S) 1+G(S)H(S)

Simplificació de diagrames de Blocks

Normalment ens cal determinar G(s) i M(s) en un sistema de control en el qual hi ha moltes més coses: En
general la funcio transferència total ens permet simplificar el sistema però perdem molta informació de
com es comporta el sistema per dintre.

Totes les realimentacions es simplifiquen aixins:

M(S) = Y(S) =  G(S)____

R(S) 1+G(S)H(S)

Les funcions de transferència i guanys es treuen multiplicant:

Estabilitat de Sistemes de control linial

El primer requeriment per un sistema és la ESTABILITAT

Estabilitat absoluta Simplement és saber si és o no és estable

Estabilitat relativa Si un sistema és estable saber com d'estable n'és

Relació entre arrels del polinomi característic i l'estabilitat

G(S) = L(g(t)) = " g(t)e−stdt
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Si una o més arrels estàn a la part negativa del pla complexe llavors:

|e−st | < 1 Però

Si només una de les arrels està a la part positiva del pla complexe llavors:

|est | Això tendeix a ", que viola els requisits de l'estabilitat.

Per tant:

Una arrel no pot estar al semiplà dret del plà complexe o no pot tenir part real positiva.

Criteri de Hurwitz

F(S) = ans n + an−1sn−1 + ... + a1s + a0

On tots els coeficient són reals, perque no presenti arrels amb parts reals positives:

Tots els coeficients han de tenir el mateix signe• 
Tots els determinants de Hurwitz han de ser positius• 

Els determinants de Hurwitz es formen com segueix

D1 = a n−1 D2 = |a n−1 a n−3| D3 = | a n−1 a n−3 a n−5 |

|a n a n−2| | a n a n−2 a n−4|

| 0 a n−1 a n−3 |

El criteri de Routh consisteix en arreglar aquests determinants

Tabulació de Routh Per una equació de 6è grau

F(S) = a6s 6 + a5s5 + a4s 4 + a3s3 + a2s2 + a1s + a0

s 6 a6 a4 a2 a0

s 5 a5 a3 a1 0

s 4 a5a 4−a 6a 3 = A a5a2 −a6a 1 = B a0 0

a5 a5

s 3 Aa 3−a 5B = C Aa1 −a5a0 = D 0 0

A A

s 2 BC − AD = E a0 0 0

C

s 1 ED − Ca0 = F 0 0 0
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E

s 0 a0 0 0 0

Perque un sistema sigui estable cal que tots els coeficient de la 1era columna, o sigui

a6, a5, A, C, E, F han de ser tots positius

A més el nº de intercanvis de signe en aquests elements indica el nº d'arrels amb parts positives que té
l'equació.

Casos especials en la tabulació de Routh

Es poden presentar les següents dificultats aplicant la tabulació de Routh:

El primer element de qualsevol dels renglons de la taula de Routh és 0• 
Tots els elements d'una fila de la taula de routh són 0• 

En el primer cas es reemplaça el 0 per un numero petit arbitrari �

Exemple:

S4 1 2 3

S3 1 2 0

S2 0 3 En aquí reemplaçem el 0 pel nº arbitrari �

S2 � 3

S1 2�−3 / � = −3/� 0 � es comporta com si fos un 0 al numerador

S0 3

El segon cas es dona si una o vàries d'aquestes condicions poden existir

L'equació té almenys 2 arrels d'igual magnitud i signes contraris• 
L'equació té un o més parells d'arrels imaginàries• 
L'equació té parells d'arrels complexes simètriques amb el punt (0,0)• 

Per arreglar−ho es fa el següent:

A(s) = 0 utilitzant els coeficients de la fila que es troba dalt de la renglera de 0s• 
Agafar la derivada dA(s)/ds = 0• 
Reemplaçar la renglera de 0s pels coeficients de dA(s)/ds = 0• 

Exemple 2on Cás

S5 1 8 7

S4 4 8 4
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S3 6 6 0

S2 4 4 0

S1 0 0 A(s) = 4s2 + 4s

dA(s)/ds = 8s

S1 8 0 Son els coeficients de dA(s9/ds

S0 4

L'us de la taula de Routh s'utilitza per determinar la Klím d'estabilitat tractant la K com si fós un paràmetre

També s'utilitza per determinar el valor critic de paràmetres perque un sistema sigui estable, quan nosaltres
desconeixem alguns dels paràmetres.

Anàlisis de sistemes de Control en el domini del temps

Errors en l'estat estacionari, precisió

resposta a un esglaó (error de posició)• 

R(t) = K*Us(t) R(S) = K/s

Kp = lím G(S)H(S) per s0 Ess = 1/1+Kp

resposta a una rampa (error de velocitat)• 

R(t) = Kt*Us(t) R(S) = K/s2

Kv = lím S*G(S)H(S) per s0 Ess = 1/Kv

resposta a una paràbola (error d'acceleració)• 

R(t) = Kt2*Us(t) R(S) = K/S3

Ka = lím S2*G(S)H(S) per s0 Ess = 1/Ka

Tipus Error Posicio Error Veloc. Error Accel.

O R/(1+Kp) Infinit Infinit

I No en te R/Kv Infinit

II No en te No en te R/Ka

III No en te No en te No en te

R = Magnitud de l'entrada RU(s) en cas d'un esglaó

El tipus del sistema el determina el nº d'integradors que té el sistema.

Especificacions en el domini del temps
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Sobrepic màxim Yss − Ymàx en %• 
Temps de retard Td, es el temps que tarda a aconseguir el 50% del valor final• 
Temps d'alçament Tr, temps que tarda d'anar al 10% − 90% del valor final• 
Temps d'assentament Ts, temps de permanència a una banda del X %• 

Normalment s'agafa un 5% o un 2%

Resposta d'un sistema prototipus de 2on ordre

G(S) =  �n2_______

s2 + 2��n + �n2

La solució d'aquest sistema ens dóna les arrels que són:

� = ��n ± j�n*(1−�) ½ = � ± j�d on �d = freqüència esmorteïda

�n = Distància radial de les arrels a l'origen del pla s• 
� = La part real de les arrels• 
�d = La part imaginària de les arrels• 
� = Cosinus de l'angle entre la linea radial de les arrels i l'eix negatiu• 

� = cos �
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Tipus de sistemes segons el paràmetre �

subesmorteït 0<�<1 s1,s2 = −��n ± j�n(1−�) 1/2• 
Críticament esmorteït �=1 s1,s2 = −�n• 
Sobreesmorteït �>1 s1,s2 = −��n ± j�n(�−1) 1/2• 
No esmorteït �=0 s1,s2 = ± j�n• 
Subesmorteïment negatiu −1<�<0 s1,s2 = −��n ± j�n(1−�) ½ ��n>0• 
Sobreesmorteïment negatiu �<−1 s1,s2 = −��n ± j�n(�−1) ½ ��n>0• 

Calcul de les especifiacions en el domini del temps

Sobrepic màxim i temps de pic

Tpic =  �_____ temps quan es presenta el sobrepic

�n*(1−�) 1/2

SP = 100*exp[−��/(1−�) 1/2] SP = ymàx − yss

Si reduim l'esmorteïment, reduïm el soprepic• 

Temps de retard i temps d'aixecament

�n*td = 1+0.7� (td = temps retard = temps que assolim el 50% del valor)

�n*td = 1.1 + 0.125� + 0.469�

�n*tr = 0.8+2.5� (tr = temps d'aixecament = temps que passem del 10 a 90% del valor)

�n*tr = 1 − 0.4167� + 2.917�

tr i td proporcionals a � i inversament a �n• 
Si disminuim �n augmentarem tr i td• 

Temps d'assentament

�n*ts = −1* ln[0.05(1−�) 1/2] temps d'assentament a una banda del 5%

�

109



té una discontinuitat per �=0.691 (sobrepic del 5%)• 
Per �>0.691 ts és inversament proporcional a � i �n• 
Per �<0.691 ts és proporcional a � i inversament proporcional a �n• 

Efecte d'afegir un pol a la funció de transferència (llaç obert)

G(S) =  �n2______ Afegint un pol a la funció de transferència:

s2 + 2��n + �n2

G(S) =  �n2_________ Afegint un pol a la funció de transferència:

(Ts+1)s2 + 2��n + �n2

L'adició del pol ens afecta de la següent manera:

Generalment: Augment del sobrepic i temps de pic• 
Augment del temps d'establiment• 
Inestabilització del sistema• 

Efecte d'afedir un zero a la funció de transferència (llaç obert)

G(S) =  �n2______ Afegint un pol a la funció de transferència:

s2 + 2��n + �n2

G(S) =  (Ts+1)�n2___ Afegint un pol a la funció de transferència:

s2 + 2��n + �n2
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Disminueix el temps d'aixecament• 
Augmenta el sobrepic màxim• 
Té l'efecte oposat del d'adició d'un pol• 

Els zeros i pols molt pròxims tenen afectes contraposats i es poden menystenir els seus efectes.

Pols dominants de les funcions de transferència

Pol dominant Es aquell que te un efecte molt significatiu en la resposta transitòria

Pol insignificant No tenen pes especific en la resposta transitòria

Els pols que estan vora l'origen fan creixer ala resposta transitoria i decauran molt lentament en canvi que els
pols que estan lluny cauen molt ràpidament.
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Entre les 2 regions : Insignificants i dominants hi ha una distància D

D = Magnitud real 5 a 10 vegades major que els pols dominants.

Esmorteïment relatiu

Un sistema de 3er ordre o més que té pols dominants exemple:

M(S) = Y(S) =  20_____ Té 2 pols dominants a 1±j �=0.707

R(S) (s+10)(s2+2s+2) El pol real es a 10 D = 10

Es pot dir que �r=0.707 (esmorteiment relatiu)

Per despreciar el pol insignificant cal tenir em compte:

El valor final Yss ha de ser el mateix que el del sistema simplificat• 

M(S) = Y(S) =  20_____ =  20________ =  20____

R(S) (s+10)(s2+2s+2) 10(s/10 + 1)(s2+2s+2) 10(s2+2s+2)

Simplificació de sistemes

Es desitjable en sistemes d'ordre alt poder−los simplificar a un ordre més baix que la seva resposta transistòria
sigui similar.

MH(s) = Sistema d'ordre superior = K (1+b1s+b2s2+ .... + bmsm)

1+a1s+a2s2+ ....+ ansn

ML(s) = Sistema ordre inferior = K (1+c1s+c2s2+ .... + cqsq)

1+d1s+d2s2+ ....+ dpsp
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K es la mateixa per assegurar que es mantingui el valor final en el sistema d'ordre baix

Càlcul de ML(s)

MH(s) = 1+m1s+m2s2+ .... + musu

ML(s) 1+l1s+l2s2+ .... + lvsv

MH(j�)2 = 1+e2s2+e4s4 +e6s6+...+e2us2u = 1

ML(j�)2 1+f2s2+f4s4 +f6s6+...+e2vs2v

Per la condició que hem expressat a dalt:

f2 = e2, f4 = e4 ,.... −> El que resta es l'error que cometem

Igualant−ho obtenim que:

e2 = 2m2 − m12

e4 = 2m4 − 2m1m3 + m22

e6 = 2m6 − 2m1m5 + 2m2m4 − m32

e8 = 2m8 − 2m1m7 + 2m2m6 − 2m3m5 + m42

f2 = 2l2 − l12 = e2 = 2m2 − m12

f4 = 2l4 − 2l1l3 + l22 = e4 = 2m4 − 2m1m3 + m22

f6 = 2l6 − 2l1l5 + 2l2l4 − l32 = e6

f8 = 2l8 − 2l1l7 + 2l2l6 − 2l3l5 + l42 = e8 etc.

Exemple: Simplificació sistema 3er grau a 2on grau

M(S) = Y(S) =  8_____ =  1_________

R(S) s3+6s2+12s+8 0.125s3+0.75s2+1.5s+1

Els pols están tots a s+2

ML(S) =  1____

1+d1s+d2s2

M(S) =  1+d1s+d2s2 =  1+m1s+m2s2_

ML(S) 0.125s3+0.75s2+1.5s+1 1+l1s+l2s2+l3s3

L1 =1.5, L2 = 0.75, L3 = 0.125

113



f2 = 2l2 − l12 = e2 = 2m2 − m12 1.5−1.52 = −075 = 2d2 − d12

f4 = − 2l1l3 + l22 = e4 = m22 0.1875 = d22

f6 = −0.156 = Error que cometem

Tenim que: d2 = 0.433; d1 = 1.271

ML(S) =  1____ =  1_______ =  2.31______

1+d1s+d2s2 1+1.271s+0.433s2 s2 + 2.936s + 2.31

Comparació de les respostes dels 2 sistemes

L'aproximació es tan mes bona quanta més dominància de pols hi hagi.

Construcció de diagrames de Bode

En els diagrames de Bode ens podem trobar aquests cinc tipus de factors simples:

factors Constants K• 
Pols i Zeros en el origen: 1/s ó s, integradors i derivadors• 
Pols i Zeros a s = −a: Factors (s+a)• 
Polts i zeros complexes: (1 + 2��n + �n2)• 
Retards purs e−Tds• 

Constant real K

Totes les K's son positives, per tant; KdB = 20*log K

El seu diagrama de Bóde és el següent:
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Pols i zeros a l'origen, 1/s i s Integradors i derivadors

Integradors

El seu pendent és de −20 dB/dec i passen per 0 dB quan �=1

El seu defasatge és de −90º

Derivadors

El seu pendent és de 20 dB/dec i passen per 0 dB quan �=1

El seu defasatge és de −90º

El diagrama de Bóde per un integrador és:
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Pol Simple

La funció del pol simple és 1/(Ts+1)

Guany

Asíntotes | per �<1/T el guany és 0 dB

| per �>1/T Té un pendent de −20 dB/dec

Podem calcular−ho més acuradament si

Guany = 20*log (1+�T2) 1/2

Defasatge

| per �<1/10T el defasatge és 0º

Asíntotes | per �>10/T el defasatge és −90º

| passa per −45º quan � = 1/T

Podem calcular−ho més acuradament

Defasatge = arctg (�T)

El seu diagrama de Bóde és el següent:
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Els zeros simples són iguals tret que els pendents són positius i defasatges també.

Pols Complexes

La funció de transferència és:

�n2 / s2 + 2��n + �n2

Tenim les següents característiques que hem de calcular

Freqüència Ressonància: �r = �n(1−2�)1/2

Magnitud Pic : Mr = 1 / [2�(1−�)1/2]

Ampla de Banda : BW = �n[(1−2�) + (�−4� + 2) 1/2] 1/2

Guany

Asíntotes | per �<1/T el guany és 0 dB

| per �>1/T Té un pendent de −40 dB/dec

Ressonancia | Si � < 0'707 Mr = 1 / [2�(1−�)1/2]; �r = �n(1−2�)1/2

| Si � > 0'707 No presenta pic de ressonància

Defasatge
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| per �<�n/10 el defasatge és 0º

Asíntotes | per �>10*�n el defasatge és −180º

| passa per −90º quan � = �n

El diagrama de Bóde (Canviant esmorteïments) són els següents:

Diagrama de Bode d'un pol complexe amb ressonància
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Retard Pur e−Tds

El seu guany és 0 i el seu defasatge és aquest:

a Td/10 (−5'3º), a Td (−53º) a 10Td (−530º)

Construcció del lloc geomètric de les arrels (Conceptes Bàsics)

F(s) = P(s) + KQ(s) = 0 K entre (−",+")

P(s) = Sn + an−1sn−1 + ... + a 1s + a 0

Q(s) = Sm + b m−1sm−1m−1 +...+b1s + b 0 n i m = Enters positius.

Propietats Bàsiques:

En sistemes de Control

Y(S) =  G(S) =  __ G(S)____
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R(S) 1+G(S)H(S) 1+KG(S)H(S)

Condició de magnitud

G(S)H(S) = −1/K K entre (−",+")

Condicions d'angle

G(S)H(S) = (2i + 1)� per K>0 (no es contemplen K's negatives)

Construcció del lloc d'arrels

G(S)H(S) = K(s+Z1)(s+Z2) ... (s+Zm)

(s+P1)(s+P2) .... (S+Pn)

Punts on K=0 i K="

K = 0 Solucionar el denominador característic (s+P1)(s+P2) .... (S+Pn)

K = " Solucionar el numerador (s+Z1)(s+Z2) ... (s+Zm)

Aixi els pols són quan K = 0 i els Zeros quan K = "

Exemple K(s+1)/s(s+2)(s+3)

Angles de les asíntotes per K's positives

M = Ordre del numerador

N = Ordre del denominador: llavors:

Hi haurà [N−M] asintotes que descriuen el comportament del lloc d'arrels per s="

Per valors grans de s, els angles de les asíntotes seràn:

�i = 2i + 1 * 180º

|N−M| on i va des de 0 a |N−M−1|

Intersecció de les asíntotes (centroide)

La intersecció de les |N−M| asíntotes del lloc d'arrels la dóna la següent equació:

�i = �parts reals dels pols de G(S)H(S) − �parts reals dels zeros de G(S)H(S)
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N − M

Exemples:

Nº zeros = 0; Nº pols = 2; asintotes à 90 i 270º

Nº zeros = 0; Nº pols = 3; asintotes à 60, 180 i 300º

Nº zeros = 0; Nº pols = 4; asintotes à 45, 135 ,225 i 315º
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Anàlisi de l'estabilitat relativa amb el Diagrama de Bóde

Marge de Guany i Marge de Fase

En el domini de la freq. es quantifica l'estabilitat amb el MG i MF

Marge de Guany

Un creuament de fase és quan la traza de Bode intersecta a −180º

�p = Freq on hi ha el creuament de fase

<L(j�p) = 180º

El MG es la quantitat de guany en dB que es poden afegir al llaç abans que el sistema es torni inestable:

KLím = MG MG = 20log (1/L(j�p)

Si no hi ha creuament de fase llavors MG = "

Marge de Fase

Un creuament de guany és quan la traza de Bode intersecta a 0dB ó L(j�)=1

�g = Freq on hi ha el creuament de guany

|L(j�g)| = 1

el MP es l'angle en graus que la traza s'ha de girar al voltant de l'origen perquè el creuament de fase passi per
−180º

Llavors MP = <L(j�g) −180º
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Si no hi ha creuament de fase llavors MG = "

Si hi ha retards purs cal recordar que e−Tds " 1−tds/2

1+tds/2

O que quan � = td l'angle es 53º, a � = td/10 l'angle és 5'3º

* Estabilitat: Klím (en dB) = MG

Un sistema es inestable si MG > 0dB o MP<0ºTIPUS DE CONTROLADORS

Controlador PI

Gc(s) = Kp + Ki/s = Kp(1+(Ki/Kp)s)/s

En el domini temporal:

Gc(t) = Kp*e(t) + Ki*"e(t)dt

Com podem veure té un 0 a −Kp/Ki i un pol a l'origen

Aventatges i desventatges del controlador PI

Resposta a una entrada graó d'un PI
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Ens augmenta el tipus del sistema en 1 (redueix l'error)• 
Ens alenteix la resposta (Baixa BW, Pugen Tr,Tp,Ts)• 
Si no es sintonitza bé pot inestabilitzar el sistema• 
Es pot saturar a baixes freqüències (es filtre passa−baixos)• 
Ens augmenta el sobrepic de la resposta (MP disminueix)• 

Controlador PD
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Gc(s) = Kp + Kds = Kp[1+(Kd/Kp)s]

En el domini temporal:

Gc(t) = Kp*e(t) + Kd*de(t)/dt

Com podem veure té un zero a −Kp/Kd i cap pol

Aventatges i desventatges del controlador PI

Resposta a una entrada rampa d'un PD
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Redueix l'esmorteiment i el sobrepic• 
Reduiex temps d'aixecament i establiment, acelera el sistema• 
Millora MG, MF i incrementa l'ampla de Banda• 
Es pot saturar per altes freqüències (es un filtre passa alts)• 
No funciona per sistemes poc esmorteïts o inicialment inestables• 
No ens corregeix l'error (ens deixa el tipus del sistema tal qual)• 

Controlador PID

Es com una combinació d'un PI i un PD

Gc(s) = Kp + Ki/s + Kds = Kp(1 + (Ki/Kp)/s + (Kd/Kp)s)

Veiem que té:

2 zeros (Poden ser reals o bé complexes)• 
1 pol a l'origen• 

Es com un entremig entre el PI i Pd, té els següents avantatges i incombenients:

Pot ajustar 3 especificacions al mateix temps: 3 paràmetres: Kp,Ki,Kd• 
Es pot saturar a altes i baixes freqüències• 
Augmenta en 1 el tipus d'un sistema però no l'alenteix• 
Podem triar amb ell la posició del pol real perque sigui insignificant• 
Costa mes de sintonitzar que un PI o un PD• 

La seva resposta freqüencial per Kp = 1, Kd = 0.2, Ki = 0.6 és aquesta:
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A baixes freq ens disminueix MP (augmenta SP) i a altes es al reves

Podem fer moltes combinacions amb MP,MG i BW depenenet d'on col.loquem els paràmetres.

Podem ajustar−los amb regim temporal o amb el diagrama de Bode

DISSENY DE CONTROLADORS

Disseny de controladors fent servir el mètode d'assignació de pols

El controlador que es proposa utilitzar per a aconseguir controlar el nostre procés pot ser un controlador
PID,PI,PD o P

En el cas d'un PID

Gc(s) = Kp + Ki/s + Kds

L'ajuste d'aquest controlador es farà fent servir el mètode d'assignació de pols simple

El disseny de controladors mitjançant el mètode d'assignació de pols simple consisteix en determinar el
controlador a partir de la condició de què el sistema controlat tingui els pols en el lloc desitjat, sigui:

Gc(s) = Nc(s) / Dc(s)

La funció de transferència del controlador i sigui:

Gp(s) = Np(s) / Dp(s)

La funció de transferència del procés a controlar, llavors la funció de transferència del sistema controlat
suposant que la realimentació és unitària valdrà:
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T(S) =  Nc(s)*Np(s)______

Dc(s)Dp(s) + Nc(s)Np(s)

A partir de les especificacions de disseny determinarem la posició dels pols del sistema controlat i per tant el
polinomi denominador P(s) de la funció de transferència del sistema en llaç tancat T(s). Igualment el polinomi
desitjat amb el polinomi a ajustar determinarem els paràmetres del controlador

Dc(s)DP(s) + Nc(s)Np(s) = P(S) que es el polinomi desitjat

Aquesta equació s'anomena equació diofàntica.

Exemple amb un controlador PD

G(S) =  1000 M(S) =  1000____

s(s+100) s2+10s+1000

Especificacions:

SP < 5% � = 0.707• 
Tr = 0.05sec Tr = 0.8 + 2.5� / �n �n = 51'35.• 

Pols del nostre sistema: Pols Sistema controlat (especificacions)

s2+10s+1000 s2 + 0.707*51'35s + 51'352 = s2+36.3s+2638

Per un PD:

Gc(s) = Kp+Kds GcGp = 1000(Kp+Kds) M(S) = _____1000(Kp+Kds)_____

s(s+100) s2+(10+1000Kd)s+1000Kp

P(S) = s2+36.3s+2638 = s2+(10+1000Kd)s+1000Kp

Kd = 26.3/1000 = 0.0263; Kp = 2638/1000 = 2.638

La funció de transferència total ens queda:

M(S) =  2638+26.3s el zero està a s=−100

s2+36.3s+2638

Efecte inestabilitzador del retard

Si tenim en compte que els sistemes normalment tenen un retard present en el model del sistema observarem
al simular el sistema controlat que el seu efecte és el desestabilitzar el sistema.
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Si determinem la funció de transferència del sistema realimentat veurem que el retard apareix com un terme
més del denominador. Normalment l'efecte d'aquest terme és desestabilitzar el sistema realimentat.

T(S) =  Gp(s) * e−std _

1+Gp(s)*e−std

Per a poder estudiar l'efecte inestabilitzador del retard del sistema utilitzarem cal utilitzar els diagrames de
Bode, el que fa el retard es canviar−nos el marge de Fase.

Disseny de controladors empíricament: Ziegler−Nichols

Hi ha metodes empirics que ens permeten ajustar controladors: Ziegler−Nichols.

Ajust en llaç tancat

El procediment consisteix en:

Col.locar controlador P amb guany petit i obtenir la resposta a un esglaó• 
Augmentar la K fins a obtenir una resposta oscil.latòria mantinguda• 
Anotar guany crític (Kpc) i període d'oscil.lació Tc• 

Segons Ziegler−Nichols el paràmetres del controlador són:

K Ti Td

PID
Controler

0'6Kpc 0'5*Tc 0'125Tc

PI Controler 0'45Kpc Tc/1.2

P Controler 0'5Kpc

On la funció de transferència el controlador PID és:

Gc(s) = K(1+ 1/TiS + Tds)

Ajust en llaç obert

El procediment s'utilitza en sistemes 1er ordre amb retard, consisteix en:

Obtenir la resposta en llaç obert del sistema amb retard• 
Anotar L = temps retard i T = constant de temps• 

Nomes funciona si T/L >= 4 ó més. Entre 3 i 4 funciona amb reparos
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Segons Ziegler−Nichols el paràmetres del controlador seràn:

K Ti Td

PID
Controler

1'2T/L 2L 0'5L

PI Controler 0'9T/L L/0'3

P Controler T/L

Controladors d'avanç i atrasament de fase

S'utilitzen perquè la seva resposta és fisicament real

Gc(s) = s+Z1 = 1+aTs Presenten un pol a s+P1 i un zero a s+Z1

s+P1 1+Ts

Avanç de Fase P1>Z1 a < 1

Retard de Fase P1<Z1 a > 1

La seva resposta freqüencial és: Es sintonitzem utilitzant els diagrames de Bode

Disseny dels controladors Avenç−Retard fase

Per sintonitzar−los calen 2 especificacions, Normalment MP (Sobrepic) i error.

dibuixar Bode per K = 1 de Gp(s)• 
Mirar MP i comparar−lo amb el desitjat• 
"Gc(j�) = "Gp(j�) − MP• 
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�n = 1/"a *T Freq. tall del sistema

Si coneixem l'angle "Gc(j�) = �m obtenim a com:

a = (1+sin �m) / (1−sin �m) �m l'escollim segons els especificacions

el guany del controlador en alta freq és: GF = 20*log a

Cal ajustar perquè la freq. Estigui a −GF/2, llavors utilitzar la fòrmula

�n = 1/"a *T Per determinar la T

Perquè sigui efectiu el valor de T ha de ser petit.

Filtres de cancelació de zeros

Normalment al dissenyar controladors PI,PD i PID cal mirar on cauen els 0s

CASOS:

0's insignificants Estàn a D > 10, el controlador funciona• 
0's a 5<D<10 podem despreciar els efectes tot hi que afecten poc• 
0's pròxims a pols del controlador, cancelen els afectes, cal eliminar−los• 
0's dominants. Cal eliminar−los perquè ens afecten la resposta• 
altres casos: Cal avaluar l'efecte dels 0s• 

Per eliminar els 0's hem de dissenyar filtres que permetin eliminar−los

Assignació de pols completa

Per evitar aquesta addició d'un zero que fa que la resposta no es correspongui exactament amb la desitjada
hem de variar lleugerament l'estructura del sistema de control. Simplement restructurant la posició del
controlador dins del sistema de control com es mostra ala figura la funció de transferència ens queda:

T(S) =  ____Np(s) _ Np(s) = num. Procés, Dp(s) = den.Procés

Dc(s)Dp(s)+Nc(s)Np(s) Nc(s) = den.controlador Dp(s) = den.contr.

Filtre de Muesca

Una altra forma de treure els 0's és fer un controlador és utilitzar un pre−filtre a l'entrada per suavitzar la
senyal i que ens ajudi a cancel.lar els 0's
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Possibles problemes a tenir en compte

Linealització de processos no lineals, aproximació de processos complexes• 
Errors de precisió, modelització. Estadistica dels paràmetres• 
Variacions de les propietats dinàmiques del sistema i que els pols es moguin• 
Paràmetres controlador limitats pels components físics disponibles• 
Perturbacions variables en el sistema• 

...

Això fa que la cancelació de pols/zeros sigui pràcticament impossible
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