CONTROL DE LA TEMPERATURA EN 1 DIPOSIT

Grafiques del Bescanviador de calor

Q =12 m/s (constant)
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Grafiques del Diposit d'aigua

Les variables sén

CP =4180 KJ/KgK, Densitat aigua = 1000 kg/m3, Tambient = 298°K

Cabal primari = 25 I/s, Cabal secundari = 12 I/s, constant dissipacié = 7000

Volum diposit = 20000 I, Temperatura aigua entrada = 353°K

El cabal és constant (després es fara per un cabal que no és constant)




Gr fica Tsortida VS temps
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Grafica amb un control del procés, la temperatura de consigna de 323°K, el controlador utilitzat té la seguer
expressio:

k*(Tdiposit=Tconsigna) la k es calcula perqué el cabal de la bomba no

Tdiposit2 ens superi els 25 I/s (maxim possible) k=35000 per temperatura inicial de 500°K i consigna de
323°%K

Gr fica Tsortida amb realimentaci
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El controlador d'abans només serveix per temperatures entre les temperatures ambient i a uns 420°K
aproximadament, a més baixes hi ha un moment en qué la temperatura esdevé constant i no s'aproxima a |
consigna. Aixo és degut a les propies lleis de la termodinamica.



Ara es fa la mateixa grafica per una temperatura de consigna de 296°K, menor que la ambiental
La k s'ha calculat aproximadament per no sobrepassar el cabal de la bomba
| és de 30600 (aix0 s'aconsegueix amb un darlington) per una temperatura inicial de 500°K.

Com es pot apreciar no s'aconsegueix una temperatura de 296°K sin6 que és d'uns 302°K al cap d'uns 200
increments de temps (a la taula es mostren només 400 increments de temps)

Gr fica Tsortida amb realimentaci
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JUSTIFICACIO DE LES GRAFIQUES

Les grafiques han estat obtingudes a partir de les seguents taules de valors de I'excel: les dades sén les
seguents...

Constants i dades de partida:

Densitat de I'aigua (suposada constant) = 1000 kg/m3

Calor especific aigua (suposat constant) = 4180 KJ/Kg°K
Temperatura ambient (T3) = 298°K (25°C)

Temperatura circuit primari bescanviador (T4) = 353°K (80°C)
Cabal del circuit primari bescanviador (Q3) = 25 I/s

Cabal del circuit secundari bescanviador (Q4) =12 I/s
Constant de dissipacié k = 7000 W/K

Volum del diposit = 20000 litres



BESCANVIADOR DE CALOR

L'equacié que regeix el bescanviador de calor és:

W3 + W4 =W1 + W2

Q3(T3-T2) = Q4(T2-T4) d'on s'ha d'aillar T2 (Temperatura entrada)
DIPOSIT

L'equacié que regeix la temperatura de sortida és:

cV(dT4/dt) = cQ2T2 - cQ2T4 - k(T4-Ta)

llavors canviant la derivada per T(t+(t1-t0)) = T(t) + (t1-t0)*dT/dt

Les taules que han sortit, per 100 increments de temps de 3 unitats son:
La temperatura de consigna en aquest cas es de 333°K

Resta es el cabal que s'introdueix en la realimentacio

t i Q4 |12 T4 (K) |Resta
*

3 1 25 [3255 |500 24,78

6 2 24,78 |325,378 |498,702 [24,7265
9 3 24,73 |325,349 496,773 [24,6453
12 |4 24,65 |325,304 (494,237 [24,5355
15 |5 24,54 (325,242 491,127 24,396
18 |6 244 |325,164 |487,483 [24,2253
21 |7 24,23 |325,067 |483,351 [24,0223
24 |8 24,02 [324,952 |478,785 |23,7855
27 |9 23,79 |324,815 |473,84 [23,5137
30 |10  [23,51 [324,658 |468,578 [23,206
33 |11 [23,21 |324,477 463,06 [22,8616
36 |12 [22,86 |324,271 |457,348 |22,4805
39 |13 [22,48 |324,041 451,504 |22,0628
42 |14  [22,06 |323,784 |445,586 (21,6095
45 |15  [21,61 |323,5 439,649 [21,1221
48 |16 [21,12 |323,188 |433,745 [20,6026
51 |17 [20,6 [322,848 |427,918 20,0538
54 |18  [20,05 322,481 |422,209 [19,4788
57 |19  |19,48 |322,086 |416,65 [18,8813
60 |20  |18,88 |321,665 411,269 [18,2652
63 |21 [18,27 |321,219 |406,087 17,6345
66 |22 [17,63 [320,749 |401,12 [16,9935
69 [23  [16,99 (320,257 (396,379 |16,3463




72 24 16,35 (319,744 |391,869 |15,6967
75 25 15,7 (319,213 |387,591 |15,0486
78 26 15,05 (318,667 |383,546 |14,4051
81 27 14,41 (318,106 |379,727 |13,7695
84 28 13,77 |317,534 |376,13 13,1441
87 29 13,14 |316,953 |372,746 (12,5314
90 30 12,53 |316,364 |369,566 (11,9331
93 31 11,93 [315,77 |366,58 11,3506
96 32 11,35 |315,174 |363,779 (10,7852
99 33 10,79 [314,576 |361,152 10,2377
102 |34 10,24 [313,979 |358,688 [9,70862
105 |35 9,709 (313,384 (356,378 [9,19838
108 |36 9,198 (312,793 (354,213 [8,70712
111 |37 8,707 |312,207 |352,183 |8,23485
114 |38 8,235 |311,628 |350,278 |7,78146
117 |39 7,781 |311,056 |348,492 |7,34671
120 |40 7,347 310,492 |346,817 |6,93031
123 |41 6,93 |309,937 |345,245 |6,53187
126 |42 6,532 309,393 |343,769 |6,15099
129 |43 6,151 |308,86 |342,383 |5,78722
132 |44 5,787 (308,339 (341,082 |[5,44009
135 |45 5,44 307,829 (339,861 [5,10911
138 |46 5,109 (307,333 (338,714 [4,7938

141 |47 4,794 (306,849 |337,636 |4,49367
144 148 4,494 (306,38 |336,625 |4,20822
147 149 4,208 (305,924 |335,674 |3,93697
150 |50 3,937 (305,483 (334,783 [3,67944
153 |51 3,679 (305,056 (333,945 [3,43516
156 |52 3,435 (304,644 (333,16 |[3,20366
159 |53 3,204 304,247 |332,423 |2,9845

162 |54 2,985 |303,866 |331,732 |2,77723
165 |55 2,777 |1303,499 |331,085 |2,58141
168 |56 2,581 |303,148 |330,479 |2,39661
171 |57 2,397 |302,811 (329,911 (2,2224

174 |58 2,222 1302,49 329,38 |2,05838
177 |59 2,058 302,184 |328,885 |1,90413
180 |60 1,904 |301,893 |328,422 |1,75925
183 |61 1,759 |301,616 |327,99 [1,62335
186 |62 1,623 |301,354 |327,587 |1,49604
189 |63 1,496 |301,105 |327,212 |[1,37693
192 |64 1,377 |300,871 |326,863 |1,26565
195 |65 1,266 |[300,65 [326,54 |[1,16183
198 |66 1,162 [300,443 |326,239 |1,06511




201 |67 1,065 (300,247 |325,96 |0,97512
204 |68 0,975 |300,065 |325,702 |0,89153
207 |69 0,892 299,894 |325,464 |0,81399
210 |70 0,814 299,734 |325,243 |0,74218
213 |71 0,742 [299,586 (325,04 [0,67576
216 |72 0,676 (299,448 (324,853 [0,61443
219 |73 0,614 (299,319 (324,68 [0,55788
222 |74 0,558 (299,201 (324,522 [0,50583
225 |75 0,506 (299,091 (324,377 |0,45798
228 |76 0,458 (298,989 (324,244 [0,41406
231 |77 0,414 (298,896 (324,122 |0,37381
234 |78 0,374 (298,81 (324,011 |0,33699
237 |79 0,337 (298,732 (323,909 [0,30336
240 |80 0,303 |298,659 |323,817 |0,27267
243 |81 0,273 298,593 |323,733 |0,24473
246 |82 0,245 298,533 |323,656 |0,21933
249 |83 0,219 298,478 |323,587 |0,19626
252 |84 0,196 |298,428 |323,524 |0,17535
255 |85 0,175 298,383 |323,468 |0,15643
258 |86 0,156 |298,342 |323,416 |0,13933
261 |87 0,139 (298,305 (323,37 10,1239
264 |88 0,124 (298,271 (323,329 |0,11
267 |89 0,11 (298,241 (323,291 |0,0975
270 |90 0,097 (298,214 (323,258 |0,08627
273 |91 0,086 (298,189 (323,227 [0,07621
276 |92 0,076 (298,167 (323,201 [0,06719
279 |93 0,067 (298,147 (323,176 [0,05914
282 |94 0,059 (298,13 (323,155 [0,05195
285 |95 0,052 (298,114 (323,136 [0,04554
288 |96 0,046 |298,1 323,119 |0,03984
291 |97 0,04 |298,087 (323,104 (0,03477
294 |98 0,035 |298,076 |323,09 |0,03028
297 |99 0,03 |298,067 323,078 |0,0263
300 100 (0,026 |298,058 |323,068 |0,02278
303 101 [0,023 |298,05 |323,059 |0,01967
306 102 [0,02 |298,043 |323,05 [0,01693
309 (103 ]0,017 |298,037 |323,043 |0,01452

Practica de regulacié automatica

Circuit electric

El circuit electric d'aquesta figura és el de la préactica:
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ESTUDI D'UN SISTEMA REALIMENTAT

* OBJECTIU

Els objectius de la practica sén:
» Familiaritzar—-se amb el Matlab
« Utilitzar les eines per I'analisis frequencial i temporal de sistemes linials
* Aplicar aquestes eines a l'analisis d'un sistema realimentat.

« INTRODUCCIO TEORICA

Les caracteristiques dinamiques d'un sistema realimentat (anell tancat) es poden obtindre a partir de I'estuc
d'aquest sistema en anell obert



* ESTUDI PREVI

Repassar els segients temes:

* resposta temporal
» Funcions de Transferéncia de sistemes lineals

* Llag tancat / Llag obert

« Diagrames de blocs

* Sistemes 1 entrada—1 sortida, sistemes multivariables
* Funcions de transferéncia de sistemes discrets

» Estabilitat
* Determinants de Hurwitz

Aquests determinants son un metode algebraic per determinar si un sistema és o0 no és estable mitjancant ¢
seu polinomi caracteristic. S6n la base_del criteri de Routh—Hurwitz

* Tabulacié de Routh—Hurwitz
Métode algebraic que proporciona informaci6 sobre I'estabilitat absoluta d'un sistema linial i invariant amb e
temps que té una equacié caracteristica amb coeficients constants. El criteri proba si les arrels de l'equacio
caracteristica esta en el semipla dret s. També indica el n° d'arrels que estan sobre I'eix jW i en el semipla c
Es basa en tabular els supindexs de les poténcies

« Criteri de Nyquist
Es un métode semigrafic que proveix informacié sobre la diferéncia entre el n® de pols i zeros de la funcié d
transferéncia en llag tancat que estan en el semipla dret del pla s mediant la observacio del comportament

la grafica de Nyquist de la funci6é de trasnferencia en llag tencat.

« Diagrama de Bode

Aquest diagrama és una grafica de_la magnitud de la funcié de transferéncia en llac GGW)H({W) en dB i de
fase G(IW)H(jW) en graus, en funci6 de la freqiiéncia Wm la estabilitat del sistema en llag tancat es pot

determinar observant el comportament d'aquestes grafiques

* Soluci6 de les arrels del polinomi caracteristic
Solucionar les arrels del polinomi caracteristic obtenim el valor exacte d'aquestes arrels, si tenen la part rea
positiva el sistema és inestable i si son totes a la part negativa real el sistema és estable. També hi ha els

marginalment estables que sén els integradors

* Precisio
* resposta a un esglao (error de posicio)

R(t) = K*Us(t) R(S) = K/s
Kp = lim G(S)H(S) per s0 Ess = 1/1+Kp
* resposta a una rampa (error de velocitat)

R(t) = Kt*Us(t) R(S) = K/s2



Kv = lim S*G(S)H(S) per s0 Ess = 1/Kv

* resposta a una parabola (error d'acceleracio)
R(t) = Kt2*Us(t) R(S) = K/S3
Ka = lim S2*G(S)H(S) per s0 Ess = 1/Ka

» REALITZACIO
* MATERIAL NECESSARI

Matlab amb Control System Toolbox
« US DEL MATLAB

Per fer la practica cal saber utilitzar les principals funcions de control. Estudiarem un sistema d'exemple. La
funcié de transferéncia a considerar sera:

H(s) =.num = 2s2 + 55 +1

dens2 +2s + 3

4.2.1 STEP | IMPULSE

Resposta a un esglat de sistemes lineals continus en el temps.
STEP(A,B,C,D,IU) dibuixa la resposta temporal del sistema lineal

X =Ax + Bu

y=Cx+Du

A un esglaé aplicat a I'entrada IU, T permet dir I'espai de temps a considerar
[Y,X] = STEP(A,B,C,D,IU,T) 6 [Y.X,T] = STEP(A,B,C,D,IU) retorna

la sortida i I'estat de la resposta a les matrius Y i X respectivament

T serveix per determinar el n°® de temps.

[Y,X] = STEP(NUM,DEN,T) 6 [Y,X,T] = STEP(NUM,DEN) calcula la resposta
temporal de la funcio de transferéncia: G(S) = NUM(s)/DEN(s)

on NUM i DEN contenen els coeficient dels polinomis de s

per definir el vector de Temps ho fem de la segiient manera:

t = temps inicial: increments de temps: temps final ex: t = 0:0:1:10;

4.2.21SIM



Simulacio de sistemes lineals continus en el temps a entrades arbitraries LSIM(A,B,C,D,U,T) dibuixa la
resposta temporal del sistema lineal:

X =Ax + Bu

y=Cx+Du

a l'entrada U. La Matriu U ha de tenir tantes columnes com les entrades. Cada fila de U correspon a un nou
punt de temps i U ha de tenir la llargada de (T) files.

LSIM(A,B,C,D,U,T,X0) pot utilitzar-se si existeixen condicions inicials

LSIM(NUM,DEN,U,T) dibuixa la resposta temporal de la funcié de transferéncia: G(s) = NUM(s)/DEN(s)
Per definir una rampa:

T = 0:0.1:10; (variacio en I'espai de temps i llavors)

U = k*t (rampa); U = k*t2 (parabola); U = f(t) (qualsevol cosa)

4.2.3 BODE

Diagramade Bode (resposta frequencial) del sistemes lineals continus en el temps

BODE(A,B,C,D,IU) fa el diagrama de Bode a I'entrada 1U a totes les sortides dels estats del sistema
(A,B,C,D).

IU representa l'indexs de les entrades del sistema i especifica quina entrada s'usa per la resposta freqienci
Les frequiéncies son escollides automaticament

BODE(NUM,DEN) dibuixa el diagrama de Bode de la funcié de transferéncia: G(s) = NUM(s)/DEN(s)
BODE(NUM,DEN,W) utilitza un vector de freqtiéncies donat en rad/s on s'avaluara el diagrama de Bode.
W =0:0.1:10 per freqiieéncies entre 0-10 amb increment 0.1

W = LOGSPACE (-2,2) Marge de frequéncies entre —100 i 100 rad/ss

4.2.4 ALTRES FUNCIONS

RLOCUS (num.den)

Calcula i dibuixa les localitzacions de les arrels de:

HS)=1+K*num(s)=0

Den (s)

Per una selecci6é de guanys K per dibuixar una funcié pero es possible especificar el vector K fent Rlocus
(num,dem,k)

PZMAP (num.den)

10



Dibuixa el diagrama de pols—-zeros de sistemes lineals continus en el temps.
En aquest cas computa els pols i zeros de la funci6 de transferéncia G(S) = num/den

Si el sistema té més d'una entrada, llavors els Os de trasmissié sén computats

[R.K] = RLOCFIND(NUM.DEN)

S'utilitza per seleccionar un punt de la localitzacié d'arrels de la funcié de transferéncia G(s) = num(s)/den(s
La funcié ens serveix per trobar els guanys de localitzacions d'arrels per una seérie d'arrels donades

[num.dem] = SERIES(numl.denl.num2.den2)

Determina el polinomi que s'obté quan es connecten dues funcions de transferéncia Gi(s) = numi/deni quan
estan connectats en série

[num.dem] = PARALLEL(numl.denl.num2.den?)

Determina el polinomi que s'obté quan es connecten dues funcions de transferéncia Gi(s) = numi/deni quan
estan connectats en paral.lel

CLOOP (num.den.func)

Produeix la funci6 de transferéncia en llag tencat d'un sistema amb realimentacio. La funcio H(s) = func i
G(S) = num/den. Per fer una realimentacié unitaria cal que func sigui —1.

4.3. ESTUDI D'UN SISTEMA REALIMENTAT

R(S) y. > 252+55+1 , Y(S)

5242543
Suma Guany

Funcid
Transferéncia

El procés realimentat que es proposa té la seglient estructura de dalt:

El Guany és un parametre K que cal determinar perqué el sistema sigui estable.
La funcié de transferéncia del procés a controlar és de tercer ordre:
G(s)=_05

(s+10) (s2 + 0'1789s + 0'05)

4.3.1 DOMINIS FREQUENCIALS | TEMPORALS

Representeu graficament la localitzacié dels pols i els zeros de G(s) mitjancant la funci6 PZMAP. En
base a aix0 determineu si hi ha dominancia d'un parell de pols respecte el tercer pol i valoreu la
possibilitat de reduir I'ordre del sistema.

Per fer el producte de polinomis hem fet:

11



Numl =1; num2 = 0'5; denl =[1 10]; den2 = [1 0.1789 0.05] i llavors
[num,den] = Series (huml,denl,num2,den2)
La funcié que transferéncia que hem obtingut és:

G(s) =_0.5

1s3 +10.1789s2 +1.839s + 0.5

>> PZMAP (num,den)

0.25 T T T .
02¢ X

015} 1

0.1

005} 1

Eix Imaginari
o
0

-0.05 1
01 1
015 ¢ 1
0.2F

-0.25 . : . .
-10 -8 -6 -4 -2
Eix Real

o k=X

Aqui podem veure que els 2 pols imaginaris estan molt a la vora de 0 encanvi el pol real esta molt lluny, pel
tant podem considerar que el pol a s+10 és recessiu i per tant, podem simplificar la funcié de transferencia
una de 2on ordre

Segons el gue s'’ha exposat abans podem simplificar la funcié de transferencia sempre hi quan tinguem en
compte que el valor final de la simplificacié ha de ser el mateix que el de la funcié original sind no seria una
simplificacio valida:

G(s) =_0.5 Simplificant el pol s+10 ens queda:

1s3 +10.1789s2 +1.839s + 0.5
LimG(s)=05=1
s—>00'5

Gp(s) =_0.05

12



s2 +0.1789s + 0.05

Comproveu que és possible la reduccié comparant les respostes a un esglaé del sistema original i del
sistema reduit

Amb num =[0.5] iden =[1 10.1789 1.839 0.5] fem:
>> STEP (num,den) i ens queda la seglent resposta:

1.4

Amplitud

0 10 20 30 40 50
Temps (sq)

| fem el mateix pel sistema reduit; num = [0.05], den =[1 0.1789 0.05]

13
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Representeu també el diagrama de Bode del sistema original. Compareu-Ilo amb I'anterior i indiqueu

lida la reduccié de I'ordre del sistema.
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| el diagrama de Bode del sistema simplificat és:
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Veient els diagrames de Bode podem dir que la simplificacio és valida per totes les freqliéncies compreses
entre 10 i —10 Hz, i també per totes les altres frequéncies:

En el sistema realimentat, pero, aquest sistema simplificat ja no ens sera valid.4.3.2 ANALISI DE
L'ESTABILITAT

Cal calcular amb el controlador en lla¢ obert. Aneu variant el guany de K del controlador i determinar
el guany critic Klim pel qual el marge de guany es 0 (Bode) i el marge de fase és 0.

També es possible fer-ho amb Rlocus o RlocFind
Primerament s'introdueix el numerador i denominador i llavors per tencar l'anell es fa servir la ordre Cloop.
Per K = k, obtenim la segtient Y(S)/R(S) = M(S)

M(S) =_0.5k

S3 +10.1789s2 + 1.839s + (0.5+0.5k)

Ara caldria analitzar del polinomi caracteristic quin valor de k fa que els 2 pols complexes tinguin part real O
es quan el sistema comenca a inestabilitzar-se

Fent Rlocus amb el sistema en anell tancat obtenim

15
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Hauriem de trobar el punt on els 2 pols complexes tenen part real 0, podem fer-ho amb:

[r,K] = rlocus (num,den) i mirant la matriu podriem obtenir el resultat desitjat.

RC1C2

-10.0769 -0.0510 + 0.8992i -0.0510 - 0.8992i

-10.1912 0.0062 + 1.4016i 0.0062 — 1.40164i

Aproximant més obtenim els seglents valors:

-10.1787 —-0.0001 - 1.3554i —0.0001 + 1.3554i

-10.1792 0.0001 - 1.3572i 0.0001 + 1.3572i

Ja sabem ara que perque sigui estable el polinomi ha de ser el producte d'aixo:

(s+10'179) (s2+1'8393) = s3 + 10'1789s2 + 1'839s + 18'722

la k, per tant sera:

k = 18'222*2 = 36'45 Aproximadament

Localitzeu els pols introduint el controlador en anell obert, aneu variant el guany de K del controlador i
determinar el guany critic Klim per al qual el marge de guany és 0 dB i el marge de fase és 0. Mirar els

diagrames de Bode

Per k = 1, els guanys son els seglients ; 0.5/(s3 + 10.1789s2 + 1.839s + 1)
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Per 0dB freq = 0.2 Hz ;phase deg = —125° (aprox)

Per k = 5, els guanys son els seglients ; 2.5/(s3 + 10.1789s2 + 1.839s + 3)

Per 0dB freq = 0.55 Hz, phase deg = —160° (aprox)

Per k = 10, els guanys son els seglients ; 5/(s3 + 10.1789s2 + 1.839s + 5'5)

Per 0dB freq = 0.72 Hz, phase deg = —166° (aprox)

Per k = 15, els guanys son els seglients ; 7'5/(s3 + 10.1789s2 + 1.839s + 8)

Per 0dB freq = 0.91 Hz, phase deg = —173° (aprox)

Per k = 20, els guanys son els seglients ; 10/(s3 + 10.1789s2 + 1.839s + 10'5)

Per 0dB freq = 1.05 Hz, phase deg = —175° (aprox)

Per k = 30, els guanys son els seglients ; 15/(s3 + 10.1789s2 + 1.839s + 15'5)

Per 0dB freq = 1.2 Hz, phase deg = -177° (aprox)

Per k = 40, els guanys son els seglients ; 20/(s3 + 10.1789s2 + 1.839s + 20'5)

Per 0dB freq = 1.4 Hz, phase deg = —181° (aprox)

Per k = 35, els guanys son els seglients ; 17'5/(s3 + 10.1789s2 + 1.839s + 18)

Per 0dB freq = 1.3 Hz, phase deg = —179° (aprox)

Veient aixdo podem establir que la k esta entre 35-40, podem afinar més fent un bode entre les frequéncies
1.3 Hz i 1.4 Hz i intentar trobar el punt exacte on el guany és 0dB i la fase s6n —180° perqué si la fase és m
petita llavors vol dir que hem entrat en els semiplans positius i que el sistema és inestable.

Fent W = 1.3:0.001:1.4 i un diagrama de Bode podem determinar el valor de Wn

Fent aixd obtenim una freqiéncia Wn de 1.3565 rad/s (aprox)

A partir de la frequéncia natural podem trobar el valor de k com abans, tot hi que per fer—ho estem aproxim
a un sistema de 2on grau com abans, perd ho podem fer perqué el pol a s+10 és recessiu enfront els 2 pols
complexes molt proxims a 0.

Wn2 =0.5+ 0.5k 18'4 =0.05 + 0.05 k k " 36'6

COMPROVACIO DEL VALOR DE K

Per comprovar el valor de K s'ha fer la tabulacié de Routh—Hurwitz del sistema realimentant:

M(S) =_0.5k

S3+10.1789s2 + 1.839s + (0.5+0.5k)
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S311.839

S210.1789 0.5+0.5k

S1-0.5-0.5k + 18.719

10.1789

S00.5+0.5k

Estabilitat, tots els elements lera columna han de ser positius

0.5 +0.5k > 0 k > —1 se suposa que el guany és positiu!!

18.219-0.5k > 0 k < 36.26

Comprovar que la resposta temporal en anell tancat per a guanys K<Klim és estable i que per a guanys
K>Klim és inestable. Per tancar I'anell s'utilitza CLOOP. Representeu graficament els pols i els zeros
del sistema realimentat. Relacioneu la seva posicié amb l'estabilitat

S'han agafat 3 valors de k

K = 25 la funcié de transferéncia és 12.5/(s3 + 10.1789s2 + 1.839s + 13)

—_ —_
RN o>
T T
1 1
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T
1
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B o @ =

0.2} .

U 1 1 1 1
0 10 20 30 40 50

Time (secs)

K = 36.4 la funcid de transferéncia és 18.2/(s3 + 10.1789s2 + 1.839s + 18.72)
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Per la k = 36'25 més 0 menys el sistema va oscil.lant des de 0 a 2 tot el temps sense esmorteir—se gens ni
la senyalK = 50 la funcio6 de transferéncia és 25/(s3 + 10.1789s2 + 1.839s + 30)

Amplitude

0 10 20 30 40 50
Time (secs)

Com es pot veure en imatge, el sistema és inestable perqué creix continuament fins a llegar a oscil.lar del +

Representaci6 dels pols i zeros del sisema realimentat
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Per fer—ho es fa servir la funcié RLOCUS

20
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Aix0 és la representaci6 dels pols del polinomi caracteristic, el sistema sera estable sempre hi quan els pol:
estiguin a la part negativa del semipla complexe.

4.3.3. ESTUDI DEL REGIM ESTACIONARI

Amb el sistema amb enell tancat i un guany K<KIlim observeu la resposta tem—poral a un esglad, una
rampa i a una parabola. Comproveu que els errors de po-sicid, velocitat i desplacament es corresponen
amb els d'un sistema de tipus 0.

Per fer—ho s'ha de fer servir la ordre LSIM i definir les funcions

Per un esglad utilitzem la funcié STEP (hum,den) amb k = 20

M(s) = 10/(s3 + 10.1789s2 + 1.839s + 10'5) lla¢ tancat
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La rampa no és unitaria en la resposta siné que s'estabilitza a 0.97, hi ha un error constant en la resposta.

Per definir una rampa hem de crear el vector t de temps i llavors un altre vector u que sigui una funcié de 1e
ordre de t, la rampa nostra sera u =t

LSIM (num,den,u,t)
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10
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Com es pot veure aqui, I'error de velocitat en estat estacionari és infinit, perqué el sistema no se'ns accosta
forma d'una rampa i a cada punt l'error es va fent cada cop més gran.

Per definir una parabola hem de crear el vector t de temps i llavors un altre vector u que sigui una funcio de
2on ordre de t, la rampa nostra sera u = t.*t

LSIM (num,den,u,t)
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Com es veu a la grafica, I'error d'acceleracio per aquest sistema se'ns fa més gran cada cop que anem
incrementant I'espai temporal, per tant, I'error és infinit, cosa que ens mostra que és un sistema de tipus O j
gue els errors de velocitat i acceleracié per aguest sistema son infinit i el de posicié és una constant.

Afegiu al sistema un integrador. Busqueu la nova Klim i torneu a comprovar que els erros de posicio,
velocitat i acceleracio es corresponen amb els d'un sistema de tipus I.

Utilitzeu la funcié PZMAP per veuree com canvien de posicio6 els pols i els zeros del sistema
realimentat.

M(s) = 0'5k/s4 + 10.1789s3 + 1.839s2 + 0.5s + 0.5k lla¢ tancat
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A partir d'aqui podem determinar la Klim pel sistema de 4t ordre.

Després d'haver examinar els vectors que ens ha proporcionat la funcié RLOCUS hem pogut determinar qu
els 4 pols estan tots al semipla negatiu i, per tant, el sistema és estable. Els resultats son:

—10.0000 -0.0344 + 0.2019i —0.0344 - 0.2019i -0.1102

—9.9999 0.0064 + 0.2268i 0.0064 — 0.2268i —0.1918

Interpolant:

(s+10)*(s2+0.0484)*(s+0.175) Calculant el terme independent i igualant:
Klim " 2*10*0.0484*0.175 " 0.168

Aixi si K>0.168 el sistema se'ns torna inestable.

ERRORS EN ESTAT ESTACIONARI

Per un sistema qualsevol hem agafat un valor de k de 0.1

La seva funcio de transferencia en llag tencat és la seguent:

M(s) = 0'05/s4 + 10.1789s3 + 1.839s2 + 0.5s + 0.05

Hem comprovat l'error de posicié per una entrada de gragd, la grafica que ens surt de la resposta temporal p
una entrada esglad és la segtent:
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Es veu que l'error en aquest sistema és 0 ja que per una rampa unitaria s'ens estabilitaza al valor de 1 que
valor de la rampa unitaria.

Per una entrada en forma de rampa, la resposta temporal és la seglient:
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Com es pot veure l'error en la funcié rampa és constant i és d'unes 10 unitats, aix0 vol dir que la constant
d'error és 0.1 més o menys. Per una funcio6 parabola, si el sistema és de tipus I, hi hauria d'haver un error
infinit, cosa que es pot comprovar mirant la grafica de la resposta temporal a una parabola.
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Mirant aquesta grafica podem apreciar que I'error a mesura que aumenta el temps s'ens va fent més gran, «
gue indica que l'error d'acceleracio és infinit.

Per tant; Es un sistema d'ordre |

Amb els resultats obtinguts a I'apartat 4.2.1 i 4.2.2 comproveu que es compleixen els teoremes del valor
inicial i final per entrades d'impuls, graé i rampa.

La funcié de transferéncia pels apartats de STEP, IMPULSE i LSIM és
2s2+5s+1/ s2+2s+3 A impulsos, graons i rampes la resposta és:
Teorema valor inicial a esglaos

Per un sistema estable qualsevol es compleix que

Valor inicial lim s*R(S)*M(s) = Valor inicial On R(S) = Entrada

Esglaé s—>" M(S) = Funcio de transferéncia

Teorema Valor Final

Per un sistema estable qualsevol es compleix que:

Valor final lim s*R(S)*M(s) = Valor final On R(S) = Entrada

Esglaé s—>0 M(S) = Funci6 de transferencia

VALORS INICIALS | FINALS A UN IMPULS
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R(S) = 1 M(S) = 252+5s+1/ 52+25+3

V.l. = Lim s*(2s2+5s+1) ="

S—>" 52+2s5+3

V.F. = Lim s*(2s2+5s+1) = 0

s—>0 s2+2s+3

0.5
0 T
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=
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=
At
15
2 : : :
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VALORS INICIALS | FINAL

S A UN ESGLAO

R(S) = 1/s M(S) = 2s2+5s+1/ s2+25+3

V.l. = Lim (2s2+5s+1) =2

S—>" 52+2s5+3

V.F. = Lim_(2s2+5s+1) = 1

s—>0 s2+2s+3 3
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VALORS INICIALS | FINALS A UN A RAMPA

R(S) = 1/52 M(S) = 252+5s5+1/ $2+25+3

V.l. = Lim (2s2+5s+1) =0

s—>" s*(s2+2s+3)

V.F. = Lim_(2s2+5s+1) ="

s—>0 s*(s2+2s+3)
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PRACTIQUES DE REGULACIO AUTOMATICA (EI)
DISSENY DE SISTEMES DE CONTROL
« OBJECTIU

Els objectius de la practica sén:

» Obtenir el model d'un sistema a partir de caracteristiques de la seva resposta

temporal

 Obtenir un controlador de tipus K per a un sistema de forma que la resposta
temporal del sistema controlat obeeixi uns parametres determinats

* Veure que no és assolible qualsevol conjunt d'aquest parametres

+ INTRODUCCIO TEORICA

Donat un sistema de segon ordre qualsevol, si es té el seu model podem saber algunes de les caracteristiq
de la seva resposta a un esglad. De la mateixa forma, si coneixem aquestes caracteristiques, podem obten

model del sistema.

Des del punt de vista de servosistema, ens interessa que un controlador posat sobre un sistema faci que ac
segueixi la consigna mantenint uns parametres de precisio, velocitat, estabilitat, etc. A més, ens interessa g
aguests parametres es mantinguin davant de perturbacions, variacions de carrega, etc. Aquest és el punt d

vista del regulador.

* ESTUDI PREVI
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* MODEL DEL SISTEMA
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v
G
—~—
w
——
h 4

0.1

-~

Un sistema G(s) desconegut es controla actualment de la forma indicada a la figura I. Sabem que davant ur
esglad unitari u(t) = us(t), la sortida del sistema controlat, que estava estabilitzada a 0, comenc¢a a augment
passa de 10 al cap de 0.55 s, arriba a un maxim de 12 i finalment s'estabilitza a 10. Suposant que la funcio
Y/R (n=0) és de segon ordre (pendent inicial de 0°), es demana:

 Trobar aquesta funci6 de transferéncia
* Trobar la funci6 de transferéncia en lla¢ obert

Sabem que un sistema genéric de 2on ordre té la segient funcié de transferéncia:
M(s) =_k* n2
S2+2 ns+ n2

M'estan demanant un sistema que tingui un sobrepic de 20% i d'un temps de retard (aproximadament) de
0.55s, aplicant les formules podem treure ,

Sobrepic
SP = 100e W4

1.6094 = 3.1416 /"1- elevant al quadrat 2.59 = 9.87 /1-
(9.87 +2.59) =259 =(2.59/12.46) 1/2 = 0.456
Temps de retard

Tr=1-0.4167 +2.917 =1-0.4167*0.456+2.917*0.4562 = 1.4165

nnn
0.55=1.4165 n=2.575

n

I'equacio del sistema en llag tancat és:

S2+2 ns+ n2 =s2 + 2*0.456*2.575s + 2.5752 = s2 + 2.348s + 6.63
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és G/(s2 + 2.348s + 6.63) si el guany és 10 G = 66.3

Per calcular el llag obert cal fer la seglient operacio

M(S) = K*G(S) / 1+K*G(S)H(S) on K = 10; H(S) = 0.1
M(S) = 10G(S) M(S)+M(S)G(S) = 10G(S) G(S) =_M(S)__
1+G(S) 10-M(S)

G(S) =_66.3/(s2 +2.3485 +6.63) _= _ 663
10-66.3/(s2 + 2.348s + 6.63) s2 + 2.348s

Aqui hem obtingut la funcié de transferencia del llag obert.

Per demostrar que la funcié M(S) es bona, aqui es dona la seva grafica.
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3.2.Disseny del sistema de control

Es proposa com a nova estructura de control la de la figura 2, en la que el controlador és unicament un gua
K (controlador P)

K N G(s)

v
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3.2.1 Trieu el valor de K de forma que la resposta a un esglaé unitari el sobrepic sigui menor o igual al 5%
2
—nEMN1-E
SP = 100e ™"

3=23.1416 /"1- elevant al quadrat 9 =9.87 /1-

(9.87 +9) =9 =(9/18.87) 1/2 = 0.691

evidentment, si volem ser mes barroers, podem agafar =0.707 (4'3% sobrepic)
=cos =arccos 0.691 = 46.29°

cotg = cotg 46.29 = 0.956

Ara es pot obtenir utilitzant la funci6 RLOCUS per intentar trobar la K que correspon a aquest angle:

Imag Axis

1
iy}
[ P S

Real Axis

Podem trobar la K necessaria si examinem les matrius que ens déna la funcio rlocus, a partir d'aqui podren
determinar la K.

Per fer hem de trobar les matrius R i K de la funci6 RLOCUS
[R,K] = rlocus (num,den) d'aqui podem determinar el valor de K
per fer—-ho hem obtingut la cotg = 0.956 = part real/part imaginaria

Alguns dels resultats que obtenim son :

Arrels K |Cotg |

31



-1.1740 + 0.1522i -1.1740 — 0.1522i 0,2114 7,71
-1.1740 + 0.2785i —1.1740 — 0.2785i 0,2196 4,22
-1.1740 + 0.3662i —1.1740 — 0.3662i 0,2281 3,49
-1.1740 + 0.4391i -1.1740 — 0.4391i 0,2370 2,67
-1.1740 + 0.5038i —1.1740 — 0.5038i 0,2462 2,33
-1.1740 + 0.5632i —1.1740 — 0.5632i 0,2557 2,08
-1.1740 + 0.6189i -1.1740 — 0.6189i 0,2657 1,90
-1.1740 + 0.6719i -1.1740 — 0.6719i 0,2760 1,70
-1.1740 + 0.7228i —1.1740 — 0.7228i 0,2867 1,62
-1.1740 + 0.7722i -1.1740 — 0.7722i 0,2978 1,52
-1.1740 + 0.8203i —1.1740 — 0.8203i 0,3094 1,43
-1.1740 + 0.8675i —1.1740 — 0.8675i 0,3214 1,35
-1.1740 + 0.9139i -1.1740 — 0.9139i 0,3339 1,28
-1.1740 + 0.9598i —1.1740 — 0.9598i 0,3468 1,22
-1.1740 + 1.0052i —1.1740 — 1.0052i 0,3603 1,17
-1.1740 + 1.0504i —1.1740 — 1.0504i 0,3743 1,12
-1.1740 + 1.0953i -1.1740 — 1.0953i 0,3888 1,07
-1.1740 + 1.1401i -1.1740 - 1.1401i 0,4039 1,03
-1.1740 + 1.1848i -1.1740 — 1.1848i 0,4196 0,99
-1.1740 + 1.2295i -1.1740 — 1.2295i 0,4359 0,97
-1.1740 + 1.2743i -1.1740 — 1.2743i 0,4528 0,93
-1.1740 + 1.3193i -1.1740 — 1.3193i 0,4704 0,90
-1.1740 + 1.3644i -1.1740 — 1.3644i 0,4887 0,87
-1.1740 + 1.3985i —1.1740 — 1.3985i 0,5029 0,83
-1.1740 + 1.4967i -1.1740 — 1.4967i 0,5458 0,78
-1.1740 + 1.7602i —1.1740 — 1.7602i 0,6752 0,67
-1.1740 + 2.3850i —1.1740 — 2.3850i 1,0658 0,49
-1.1740 + 3.6750i —1.1740 — 3.6750i 2,2449 0,32
-1.1740 + 6.0910i —1.1740 - 6.0910i 5,8037 0,19

Mirant la taula determinem que:
K =0'436

llavors la funcié G(S) ens queda: 6'63K = 3.05

S2 + 2.384s + 6'63K s2+2.384s + 3.05
Les arrels d'aquest sistema son:
-1.1920 + 1.2764i

-1.1920 - 1.2764i

3.2.2. Trieu el valor de K de forma que es compleixe I'especificacié de sobrepic de 'apartat 3.2.1. i que
el temps d'estabilitzacié dins una banda del 2% al voltant del valor d'equilibri sigui menor o igual que
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2.15s
segons l'equacié del temps d'assentament a una banda del 2%:

nts = =1*In(0.02*(1- ) 1/2) sabem que ts = 2.15s, llavors aillem n

n=—__1_*In(0.02%(1-0.6912) 1/2) = -0.643*In(0.02*0.723) = 2.72 rad/s

0.691*ts
= n*(1-0.6912) 1/2 = 2.72*0.723 = 1.97i (de part imaginaria)

Per lo de I'esmorteiment, la K ha d'ésser més petita que 0.449, que és el valor maxim, per sobrepics més p
I'esmorteiment ha d'ésser més gran i la K més petita.

Perd, per pulsacions, qguan més gran és la pulsacio del sistema més petit és el temps d'establiment, per un
temps d'establiment de 2.15s tenim una pulsacid, de 2.72 rad/s

-1.1740 + 1.7602i —1.1740 — 1.7602i 0,6752
-1.1740 + 2.3850i —1.1740 — 2.3850i 1,0658

Interpolant obtenim una K = 0.675 + (1.97-1.76)*(1.066—-0.675) >= 0.806

2.39-1.76

Per tant, no és assolible el que ens proposem

3.2.3. La figura 3 incorpora un determinat tipus de pertorbacié al sistema. Trobeu la funcié de
transferéncia Y/P quan no tenim en consideracio I'entrada del sistema u. Aquesta funcié de

transferéncia ens representa la resposta del sistema a les perturbacions. Es el punt de vista del
regulador.

Mirant el sistema per una entrada r=0, tenim el seguent:
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Y/P = G(S) =_6.63

1+KG(S) s2+2.3485+6.63K

4. REALITZACIO DE LA PRACTICA

4.2. Estudi del sistema sense controlar

Observeu la resposta de G(s) en anell obert a l'aplicar-li un esglad i al aplicar—li un impuls.

Tenim que G(s) en anell obert és 6.63

S2+2.348s

Al aplicar—hi un esglad obtenim la seguent resposta:

4.5

4

35

3

Amplitude
N
[ (R4

—_
[y

—_

0.5

Time (secs)

I al aplicar—Ili un impuls unitari obtenim la seguent resposta:
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Amplitude

Time (secs)

4.3. Estudi de |'estabilitat

Estudieu l'estabilitat del sistema, utilitzant els diagrames de bode amb g(s)

A partir dels diagrames deduiu quin és el guany Klim a partir del qual el sistema realimentat es torna

inestable.

Tenim que G(s) en anell tancat_és 6.63K

§2+2.348s+6.63K

Trazant el diagrama de Bode d'aquest sistema tenim:
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Representeu graficament els pols i els zeros del sistema realimentat. Relacioneu la seva posicié amb
I'estabilitat.
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Real Axis

Aqui es pot veure que per Ks positives el sistema mai €s inestable perque les arrels sempre estan a la part
negativa.

4.4 ESTUDI DEL SISTEMA REALIMENTAT
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4.4.1. Comproveu que controlant el sistema amb el guany que heu obtingut a l'apartat 3.2.1. es
compleix l'especificacio de control SP<=5%

El guany que s'ha obtingut es k = 0.436, aplicant un glat al sistema amb el guany especificat s'ha obtingut |
seglent resposta temporal:

1.2

Amplitude
o
o

0.4

0.2

D 1 1 1
0 1 2 3 4 5

Time (secs)

El valor final és 1, i el sobrepic mirant el grafic és 1.05 aproximadament, per tant es compleix I'especificacio
gue ens han posat.

4.4.2. Comproveu gue controlant el sistema amb el guany que heu obtingut a I'apartat 3.2.2. es
compleixen les especificacions de control SP<=5% i t<=2.15 s, Si no es poden complir les 2
simultaniament, busqueu una solucié de compromis. Es a dir un guany K que faci que ens acostem el
maxim possible a les especificacions de control encara que no arriben a assolir-les.

Segons lo de l'apartat 3.2.2., els resultats que tenim soén:

Per complir SP<=5% K < 0.449

Per complir ts <=2.15s, K > 0.806 (aprox)

Veiem que no podem complir les 2 especificacions que ens hem proposat, el que hem de fer és intentar
acomplir les 2 quan més poguem.

Especificacions a conseguir:
>0.707; n>2.72 >1.923
Especificacions que podem obtenir:

>0.707; n<2.72 Arrels (-1.1920 + 1.2764i,-1.1920 — 1.2764i) =1.192
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Podem intentar buscar el que s'acosti més a les nostres especificacions.
No posarem les arrels reals perqué ens apareixerien pols costats de 0 que serien dominants i molt més lent

La millor sera que tingui un esmorteiment el més proxim al 5%, aixi la omega sera més gran. Posarem
=0.691 (limit obtindrem més gran)

Per aconseguir—ho fem =1, llavors obtenim n=1.192/0.691 = 1.725 rad/s

La K per aquesta funcié és 1.7252/6.63 = 0.4488

4.4.3. Observeu la resposta de Y quan apliqguem al sistema controlat una perturbacié en forma d'esglad
unitari. Per fer—ho utilitzar la funcié de transferéncia que heu obtingut a I'apartat 3.2.3. tenint en

compte el valor de K que heu escollit a I'apartat 4.4.2. Fixeu—vos en el pic que ens apareix en aguesta

resposta.

YIP =G(S) = 6.63

1+KG(S) s2+2.348s+6.63*0.214

La resposta d'aguest sistema a un esglaé unitari és la seglent:

45}
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4.4.4. Escolliu un nou valor de K que ens faci que aquest pic sigui menor o igual a 2.25 i es segueixin
complint tant com sigui possible les especificacions anteriors.

El sobrepic que ens apareix al 4.4.1 per k = 0.436 és una mica superior a 2.25, per intentar que es rebaixi a
2.25 hem de disminuir el valor de K ja que el valor final:

Vfinal de funcié transfer perturbacio = _6.63 fent el limit
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6.63*K

El sobrepic es calcula amb la férmula ja donada a l'apartat 3.2.1.

Cal relacionar el valor final amb el sobrepic
2
—néN1-
SP = 100e "V

1 +_SP =2.25 aproximem dient que SP=5%, llavors obtenim la segiient equacio:

K 100*K

1+0.05=2.25 Obtenim K = 0.47

KK

Per aquesta constant K obtenim amb la perturbacio (entrada 0), aquesta resposta:

25

Amplitude

1 1

0 1 2 3 4 5
Time (secs)

La resposta del sistema amb perturbacions = 0, ens donara un sobrepic una mica més gran de 5% i un tem
de retard més proper a 2.15s que abans. No podem aconseguir acostar—nos més a les especificacions.

4.4.5. Utilitzeu el simulink per veure la resposta del sistema de la figura 3 quan tenum un esglad unitari
de consigna per t=1 s i un esglaé de pertorbacié quan t=5s

Sense perturbaci6:
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5.2,

Expligueu en aquest informe per qué a l'apartat 4.4.5. la resposta del sistema no es torna a estabilitzar

a y=1 després de I'esglad de pertorbacid. Es tornaria a estabilitzar a y=1 si hi poséssim un controlador

P1?

Aix0 ens passa perque a l'apartat 4.4.5. la pertorbacié ens afecta el sistema i ens canvia el seu comportam
Podem demaostrar—ho aplicant el teorema de superposicio:

Y/R =_6.63K Y/N =_6.63 (en llag tencat)

$2+2.3845+6.63K s2+2.3845+6.63K

la k que hem posat és 0.

Aplicant el valor final per esglaons

LimY/R=1LimY/N=_6.63=1

s—>0s—>0 6.63*K K

Sumant:

Vfinal = 1+1/K = (K+1)/K (si K=0.436) 1.436/0.436 = 3.29

Per aix0 la resposta no se'ns estabilitza a y=1

Un controlador PI (Proporcional Integratiu) el que ens fa és reduir—-nos I'error del sistema (en el cas del nost
sistema, l'error que tenim en una rampa ens desapareixera i el sistema podra seguir-nos, perd amb error,
entrades de tipus parabolic. Un controlador Pl ens actua afegint un integrador i un zeroLa nova

Suposem que el zero no ens afecta, llavors amb un integrador la funcié de transferencia Y/N és

YIP =_G(S) = 6.63s

1+KG(S) s2+3.348s+6.63K

El seu valor final per esglaons és

Lim s—>0 Y/P = 0/6.63K =0

La funcio

Y/R = 6.63K El seu valor final és 1 (abans calculat)
$2+3.348s+6.63K

Aplicant el teorema de Superposicid, el valor final que obtenim és:

Vfinal=0+1=1
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Per tant se'ns estabilitza el sistema a 1, amb el controlador Pl hem aconseguit eliminar els efectes de la
perturbacio.

Disseny de Sistemes de Control fent servir

el Lloc d'Arrels

5.1. Anunciat del problema

En aquesta practica aprendrem a dissenyar controladors del tipus PI, PD i PID fent servir la técnica del lloc
d'arrels. El sistema que es desitja controlar és un motor de corrent continu del qual se li vol controlar la
posicié del seu eix. L'esquema del sistema de control seria el segtent:

i 0SICIO
CONSINE Yo Gs(s) Gp(s) |t
pOsICIO = de l'eix
Controlador Motor-CC
H(s)
sensor

S'ha arribat a que el model d'un motor de corrent continu és el segient:

Gp(s)=__1 H(s) = 1 (sensor)

s(s2+4s+5)

Les especificacions de disseny que s'han fixat per la resposta temporal del sistema controlat son les segiel
 La resposta del sistema controlat ha de presentar una resposta amb un sobrepic inferior al 5%

* L'instant en qué es produeix el sobrepic ha d'ésser iguala 2 s
« L'error estacionari davant d'una consigna rampa ha d'esser inferior a 1

5.2. Relacio entre el lloc d'arrels i la resposta temporal

El lloc d'arrels mostra I'evolucié dels pols del sistema controlat en el pla complexe en funcié d'un parametre
de la funcié de transferéncia en llag obert, normalment el guany de | controlador. Si a partir del lloc d'arrels
arribem a determinar els pols dominants del sistema controlat podrem predir quina sera la seva resposta
temporal.

Aixi, per exemple, si suposem que el sistema té 2 pols dominants:

Ss=-n¥j(1-)1/2*n= =d

Llavors la seva resposta temporal davant d'una entrada grad unitari sera:

Y(t) = 1-_1 *e— nt cos (dt — arcsin())

a-)1/2

Sobre la qual es defineixen les seglients caracteristiques
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Temps de Pic: Tp=___
(1-)1/2*n
Maxim Sobrepic: SP = 100*exp(__—-___)
(1-)1/2
Temps establiment (2%) = 4/ n
5.3. Disseny de controladors P usant el lloc d'arrels
Determineu el guany d'un controlador P (guany)
Gp(s) = Kp
Que proporcioni al sistema una resposta temporal amb un sobrepic inferior al 5%
100*exp(__— __) =5 solucionant s'obté >0.691
(1-)1/2
Pel temps d'establiment n=4/*ts = 2.83 rad/sec
Per facilitat agafem =0.707 sabem que =cos
= arccos(0.707) = 45°tg = part imaginaria/part real, per tant:
part real/part imaginaria = cotg =cotg45=1
Gp(s) =__K H(s) = 1 (sensor)
S(s2+4s+5)
Pel lloc d'arrels
1+KG(s)H(s) = 0 G(s)H(s) = 1/s(s2+4s+5)

fem RLOCUS (num,den) i obtenim:
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Hem d'agafar I'area on es compleixi que >0.691 i obtenir una K

Mirant les matrius que ens dona la funci6 RLOCUS veiem que:

R1 R2 R3 K

—0.7833 + 0.7578i —0.7833 — 0.7578i —2.4334 2.8905

—0.7695 + 0.7876i —0.7695 — 0.7876i —2.4610 2.9840

A partir d'aqui obtenim Kp = 2.97 (aproximadament)

5.4. Disseny de controladors Pl usant el lloc d'arrels

La funcio de transferéncia d'un controlador PI és:

Gp(s) = Kp + Kils = K(s+a)/s

El procediment de disseny de controladors PI fent servir el lloc d'arrels consta dels seglients passos:
» Determinar el guany Kp del sistema només amb el controlador P

El guany del controlador P s'ha trobar a I'apartat 5.3. i es Kp = 2.97
» Determinar i n dels pols dominants del sistema sense controlar

Aix0 s'obté fent damp (den) obtenim i n

Eigenvalue Damping Freq. (rad/sec)

0 -1.0000 0
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—2.0000 + 1.0000i 0.8944 2.2361
—2.0000 - 1.0000i 0.8944 2.2361
L'esmorteiment és 0.8944 i la frequéncia sén 2.236 rad/sec

« Per un sistema tipus I, escollirem inicialment:
K=Kpa=2* n(1-8)

e 9
K =2.97; a=0.666*0.8944*2.236(1-0.888*0.89442) = 0.3852
Si fés de tipus 0 escolliriem K = Kp a'= a*[(Ko+1)/ko]

» Examinar el lloc d'arrels en funcié del parametre a. Determinar un valor de a que ens
proporcioni la maxima estabilitat relativa, o sigui, un factor d'esmorteiment de 0.7 pels pols
dominants del sistema realimentat

El lloc d'arrels ens calcula:

NUM(s)

H(s)=1+k ——————- =0 on n(s)/d(s) = Gp(s)

DEN(s)

En el nostre cas hem de fer—ho variar amb el parametre a. Llavors:

H(S) = 1 + K*H(s)G(s) = 1 + K(s+a)* 1

S s(s2+4s+5)

Si ens donem compte ho estem variant amb el parametre K, llavors ho hem de transformar perqué ens vari
amb el parametre a

1+KGp(s)s + KGp(s)a = 1+KGp(s)+kGp(s)a = (sabent que K=2.97)
SsSs

1+2.97Gp(s) + 2.97Gp(s)a =1+2.97aGp(s) = 1+a*Ga(s)

s s(1+2.97Gp)

Calculant Ga(s):

Ga(s) = __2.97*/(s3+4s2+5s) = 2.97

S(1+2.97/s3+4s2+5s) s4+4s3+552+2.97s

A partir d'aquesta funcié que s'ha obtingut es dibuixa el lloc de les arrels i es troba la K per la qual obtingue
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un esmorteiment de 0.7

Imag Axis

e Y S " N

Real Axis

Examinant els vectors que ens déna la funcié rlocus podem determinar el parametre a del controlador PI,
sabent que el seu esmorteiment ha d'ésser 0.7

Com hem determinat abans, la relacié entre part real i imaginaria ha d'esser d'1
R1 R2R3 R4 K

—0.0059 -0.7696 + 0.7782i —0.7696 — 0.7782i —2.4549 0

—0.0183 -0.7655 + 0.7675i —0.7655 — 0.7675i —2.4507 0

Davant la impossibilitat de trobar la K d'aquesta manera s'ha utilitzat la funci6 RLOCFIND per aproximar
més el valor de K, s'ha trobat el seglent:

Punt seleccionat: —0.6995 + 0.6908i (molt proxim a 45°)
ans = 0.0076
0 sigui,_la nostra a ens val 0.0076

Per comprovar que és un valor adequat es dibuixa la resposta temporal del sistema amb el controlador Pl &
esglad i a una rampa

La nostra funcio de transferencia en llag tancat és:

2.97(s+0.0076) = 2.97s+0.0226

S4+453+552+2.975+0.076*2.97 s4+4s3+5s52+2.97s+0.023
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| les respostes a un esglad i una rampa son:

1.2
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Com es pot veure, el sistema ens compleix 2 requeriments: no te error per una rampa i I'esmorteiment és <!
pero el temps de pic és >1 sec. Els Pl van molt bé per disminuir I'eror dels sistemes (incrementar el tipus de
sistemes) perd com a contrapartida ens alenteixen els sistemes, aquests tenen un temps d'establiment maj

5.5. Disseny de controladors PD usant el lloc d'arrels

La funci6 de transferencia d'un controlador PD és:
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Gp(s) = Kp + Kds = K(1+As)
El procediment de disseny de controladors PD fent servir el lloc d'arrels consta dels segilients passos:
» Determinar el guany Kp del sistema només amb el controlador P que proporciona maxima
estabilitat relativa, o sigui, un factor d'esmorteiment = 0.7 pels pols dominants del sistema
realimentat.
Aquest valor de Kp ja ha estat calculat a I'apartat 5.3 i és: Kp = 2.97
» Determinar el factor d'esmorteiment i la frequéncia natural del sistema sense controlar
Aix0 s'obté fent damp (den) obtenim i n
Eigenvalue Damping Freq. (rad/sec)
0-1.00000
—2.0000 + 1.0000i 0.8944 2.2361
—2.0000 - 1.0000i 0.8944 2.2361
L'esmorteiment és 0.8944 i la frequéncia sén 2.236 rad/sec
 Escollir K/IKp > 1 fins a aconseguir un error estacionari raonable (menor que 0.1 davant d'un
grao si el sistema sense controlar es de tipus 0, o bé, davant una rampa si el sistema sense
controlar és de tipus 1
L'error en estat estacionari per una rampa en el sistema amb controlador PD és:
G(s) =Kp+KdS
S(s2+4s+5)
Kv = Lim s*(Kp+Kds) = Kp
s—>0 s(s2+4s+5) 5
Ess = 1/Kv = 5/Kp en el problema ens diu que l'error ha de ser menor que 1: aixins:
Tenim que Kp = 5, aquesta es la K que hauriem de posar perqué el sistema ens donés un error menor de 1
» Examinar el lloc d'arrels en funcié del parametre A. Determinar el valor de A que ens
proporcioni la maxima estabilitat relativa, o sigui, un factor d'esmorteiment de 0.7 pels pols
dominants del sistema realimentat.
El lloc d'arrels ens calcula:
NUM(s)

H(s)=1+k-———————— = 0 on n(s)/d(s) = Gp(s)
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DEN(s)

En el nostre cas hem de fer—ho variar amb el parametre A. Llavors:
H(S) =1 + K*H(s)G(s) =1 + K(1+As)*_1

S(s2+4s+5)

Si ens donem compte ho estem variant amb el parametre K, llavors ho hem de transformar perqué ens vari
amb el parametre a

1+KGp(s) + KGp(s)As = 1+KGp(s)+kAsGp(s) = (sabent que K=2.97)
1+2.97Gp(s) + 2.97Gp(s)As = 1+2.97AGp(s)s = 1+A*Ga(s)
(1+2.97Gp)

Calculant Ga(s):

Ga(s) = 2.97s*/(s3+4s2+2.97s) _= 2.97s

(1+2.97/s3+452+2.97S) s3+452+55+2.97

A partir d'aquesta funcié que s'ha obtingut es dibuixa el lloc de les arrels i es troba la A per la qual obtingue
un esmorteiment de 0.7

Imag Axis
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1
1
]
1
1
1
1
1
)| IR . SR

Real Axis

Examinant els vectors que ens ddna la funcié rlocus podem determinar el parametre a del controlador PI,
sabent que el seu esmorteiment ha d'ésser 0.7 aprox

Com hem determinat abans, la relacié entre part real i imaginaria ha d'esser de 0.95
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R1R2R3 A

—0.6124 -1.6938 + 1.4074i —1.6938 — 1.4074i 0.6479
—0.5005 -1.7498 + 1.6950i —1.7498 - 1.6950i 0.9044
La A aproximadament, interpolant ens ha de valdre

Llavors s'agafa A = 0.875

Un cop determinada la A, amb la K que s'ha aconseguit abans el controlador és:

K(1+As) = 5(1+5*0.875s) = 2.97 + 2.6s

La funcié de transferéncia del sistema en llag obert ens queda:
5+ 2.31s en llag tancat: 2.97+2.6s

S$3+452+5s s3+452+7.65+2.6

Examinant el sistema per un graé i una rampa amb el controlador PD:

Amplitude
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D 1 1 1
0 2 4 B g 10

Time (secs)
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Com es pot veure estem complint només 1 especificacio: la de que el sobrepic no sigui superior al 5%. Aix¢
és degut a qué el pol real ens afecta molt al sistema perqué es molt proper al 0. Tot hi aixé si miren les arre
del polinomi caracteristic:

Eigenvalue Damping Freq. (rad/sec)

-0.5104 1.0000 0.5104

-1.7448 + 1.6657i 0.7233 2.4122

-1.7448 - 1.6657i 0.7233 2.4122

Veiem que sense el pol real compliriem 2 especificacionsDISSENY DE CONTROLADORS PID USANT
EL LLOC D'ARRELS

La funcié de transferéncia d'un controlador PID (Proporcionar integrador—derivador) és:
Gce(s) = Kp + Kds + Ki/s = K(s+a)/s + Kas
El procediment de disseny de controladors PID fent servir el lloc d'arrels consta dels seglients passos:
« Ajust del controlador Pl amb A=0
» Determinar el guany Kp del sistema només amb el controlador P que proporcioni un de 0.7
pels pols dominants del sistema realimentat.
Ja ha estat calculat a I'apartat 5.3 i és de: Kp = 2.97

» Determinar i n dels pols dominants del sistema sense controlar

Aix0 ha estat determinat a I'apartat 5.4 i els valors soén:
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=0.8944
n =2.236 rad/sec
« Per un sistema tipus I, escollirem inicialment:
K=Kpa=2* n(1-8)
9
Ha estat determinat a I'apartat 5.4 i el valor de a és:
a =0.3852
Si fés de tipus 0 escolliriem K = Kp a'= a*[(Ko+1)/ko]
» Examinar el lloc d'arrels en funcié del parametre a. Determinar un valor de a que ens
proporcioni la maxima estabilitat relativa, o sigui, un factor d'esmorteiment de 0.7 pels pols

dominants del sistema realimentat

Aix0 ja ha estat determinar a I'apartat 5.4 i la funcio de transferéncia del controlador Pl ens ha donat que er
seguent:

GPI1 =2.97(s+0.0076)
s
Ajust del controlador PD amb a=0
 Escollir K/Kp > 1 fins a aconseguir un error estacionari raonable
Aix0 ja ha estat determinat a I'apartat 5.5 i la Kp ha resultat ésser >=5

» Examinar el lloc d'arrels segons el parametre A. Determinar un valor de A que ens proporcioni
un =0.7 pels pols dominants del sistema realimentat

Aix0 ha estat calcular a I'apartat 5.5 i els valors soén:
A =0.875
GPD = 2.97(0.875s+1)
« Ajust final del controlador PID
La funcié de transferéncia del PID segons els valors de A,a i K que hem obtingut és:
Gc =Ki+Kp + Kds = 0.0226/s + 2.97+2.6s
S

La funcié de transferéncia del sistema en llag obert és:
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2.6s52 + 5s + 0.0226

s2(s2+4s+5)

Hem mirat les arrels del sistema i ens ha donat el segient:
Eigenvalue Damping Freq. (rad/sec)

—0.0078 1.0000 0.0078

—0.5000 1.0000 0.5000

-1.7461 + 1.6655i 0.7236 2.4131

—-1.7461 - 1.6655i 0.7236 2.4131

Com que els 2 pols s6n molt proxims al 0 ens alenteixen molt el sistema i el controlador no ens compleix to
les especificacions.

Com que el sistema no tenia les prestacions desitjades s'ha anat variant els valors de K i A fins a aconsegu
que es complissin les prestacions del sistema controlat

Hauriem de trobar algun controlador que ens anulés I'efecte d'aquests pols reals.

A partir d'aqui hem construit el lloc d'arrels; Pensant que si tenim una fregliéncia natural mes alta podem
cancelar 'efecte dels pols reals i que el sistema ens compleixi totes les especificacions.

Damping < 0.7
Kv>1

Freqliéncia natural > 2.828
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Agafant un punt de freqiieéncia mes alta obtenim:
Hem agafat un punt que ens fes que la K > 5 (per complir I'error)
Multiplicant tot pel factor 3 obtenim la seglient funcio transferéncia:

Gp(s) =7.8s2 + 8.91s + 0.0678

sS4 + 4s3 + 12.8s2 + 8.91s + 0.0678

Les grafiques de la resposta temporal per un esglaé i una rampa sén:
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Aixi que el sistema ens compleix les 3 especificacions que li demanavem.

Disseny de Sistemes de Control fent servir
Els diagrames de Bode

6.1. Anunciat del problema
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En aquesta practica aprendrem a dissenyar controladors del tipus PI, PD i PID fent servir la técnica dels
diagrames de Bode. El sistema que es desitja controlar és un motor de corrent continu del qual se li vol
controlar la posici6 del seu eix. L'esquema del sistema de control seria el seglent:

i 0SICIO
CONSINE Yo Gs(s) Gp(s) |t
pOsICIO = de l'eix
Controlador Motor-CC
H(s)
Sensor

S'ha arribat a qué el model d'un motor de corrent continu €s el segiient:

Gp(s)=__1 H(s) = 1 (sensor)

s(s2+4s+5)

Les especificacions de disseny que s'han fixat per la resposta temporal del sistema controlat son les segiel
 La resposta del sistema controlat ha de presentar una resposta amb un sobrepic inferior al 5%
* L'instant en qué es produeix el sobrepic ha d'ésser igual a 2 s
« L'error estacionari davant d'una consigna rampa ha d'esser inferior a 1

De la practica anterior haviem deduit que:

Per complir aquests 3 requisits els valors que hem de complir son:

n > 2.828 (complir que ts<2 sec)

> 0.691 (complir que el SP<5%)
Kv > 1 (per complir I'error en estat estacionari d'una rampa)
6.2. Relacio entre les especificacions temporals i freqiiencials

A partir del diagrama de Bode del sistema a controlar es pot predir en molts casos la resposta temporal del
sistema realimentat (pel cas de realimentacié unitaria). Aixi es pot demostrar que per un sistema controlat ¢
dos pols dominants:

S=-nzxj(1-)1/2 n

La frequéncia de tall obtinguda a partir del diagrama de Bode del sistema sense controlar és aproximadame
igual a la freqiiéncia natural del sistema controlat:

Per altra banda, a partir del marge de fase obtingut a partir del diagrama de Bode del sistema sense contro
es pot predir quin sera el valor del factor d'esmorteiment del sistema controlat:

= 0.01*MF
6.3. Disseny de controladors P fent servir el diagrama de Bode
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Determineu el guany d'un controlador de proporcional:

Gp(s) = Kp

Que proporcioni al sistema controlat una resposta temporal amb SP < 5%
« Sabem que = 0.01*MF llavors el MF = 70° pel sistema amb SP < 5%
Primerament hem de fer el diagrama de Bode de Gb(s) = G(S)*H(S)
Gb(s) = 1 (cal fer el diagrama de Bode d'aix0)

S(s2+4s+5)

Per obtenir els marges de fase i de guany del sistema necessitem utilitzar la funci6 MARGIN (num,den) on
num,den sén el numerador i denominador de la funcié

G(s)*H(s) i estan amb la variable s de Laplace.

Gain dB

0 T T T IR T T T BRI
1 1 1 [ N B B I 1 1 1 [ N B I
1 1 1 [ N B B A 1 1 1 [ B I
1 1 1 [ N B B I 1 [ 1 [ R B I

[a2) _9[] Y (PN (S [ TR F IO T S S, ol o e el el e [ e e e e
@ RN [ 1 1 oo
© 1 1 [ ! 1 [ 1 [
g 1 1 [ N B B 1 [ 1 [
1 1 [ N B B 1 [ 1 [

© -180 - - T L Il e - ==l - -= - [l Bl i
L 1 1 [ N B B 1 1 [ R B I
o 1 1 1 [ N B B I 1 [ [

1 1 1 [ N B B 1 [ 1 1

| 1 1 Lo ] [ 1 [

=270 L A T e e I e S R R R R B B
L L ' ' ' ' i —— L 1 L ' ' ' —

1 0 1

10 10 10

Frequency (rad/sec)
MG = 20; MF = 80.88°

Hem d'aconseguir reduir el MF de 80.88° a uns 70°, sabem que hem d'obtenir el guany per un marge de fas
de 70° i restar—lo del de 80.88° per obtenir el guany en dB que sera la K que hem de posar.

De les matrius de Bode hem obtingut el segiient
MAG DB PHASE W

0.452 (-6.89) —109.7879 0.3511
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0.362 (-8.83) —114.3574 0.4329

Interpolant entre els valors de la taula anterior, obtenim que per una PHASE de 70°, el guany en dBs ha

d'ésser de —7 dB

Sabent que la K inicial fora 1, llavors hem d'obtenir la nova K per la qual el guany ens puja 7 dB perque el

marge de fase ens sigui de 70°

K=7dB =2.238

Ara s'ha tornat a dibuixar el diagrama de Bode per comprobar la validesa de la K

2.24) Fem el diagrama de Bode d'aquesta funci6

(onK

K

G(S)H(S)

S(s2+4s+5)

TTrToaTeT
—=F=r--

1===-

o 2 A L Ll

- =

L LR DR

50

1
1
1
1
1
1
1

o

=T A

ap uieg

-100

107

RS TP N | I
—=F=FA=-F+

edaleblccccccdaaad

dececdacdaabk

270t------

107

Frequency (rad/sec)

S'ha fet margin per obtenir els marges de fase i guany del sistema
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Per tant es pot veure que complim I'especificacié que el marge de fase sigui menor de 70.
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Com veiem l'esmorteiment és molt inferior al 5%, aix0 es degut a qué la formula que hem utilitzat és molt
aproximada.

6.4. DISSENY CONTROLADORS Pl USANT DIAGRAMA DE BODE

La funcié de transferéncia en el domini frequiencial d'un controlador Pl és:
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Ge(j) =K(d+j/a)

jla

El disseny de controladors Pl consisteix en determinar els parametres K i a del controlador fins aconseguir

que el sistema controlat funcioni amb les prestacions desitjades.

El procediment de disseny de controladors Pl amb els diagrames de Bode consta dels seglients passos:

« Obtenir el diagrama de Bode de KGp(s) per al sistema sense controlar prenent K=Kp, essent
Kp el gyuany del controlador proporcional calculat a I'apartat 6.3

50 1 1 1 1 1 BRI 1 1 1 1 1 LI B |
m Of---- U LR WY
= A e
© 1 1 1 | 1 LI B B | 1 1 1 ] L]
@ &0 i it o o ey i e Rt S
_1001 ! ! !!!!:!l0 ! ! !!"!!1
10 10 10
Frequency (rad/sec)
D 1 1 1 1 1 BRI 1 1 1 1 1 LI I |
] O RS S S
= 1 | | 1 | 1 1 1 | 1 LI B |
(1) 1 1 | 1 LI B B} 1 1 1 | 1 LI B |
w 1 1 | 1 LI B I | 1 1 1 1 1 LI B |
2 -180 i Rttt o o ey S
D— 1 1 1 | 1 LI B I | 1 1 1 LI B |
R R REt O S S A E BT SR SR S AN
10" 10° 10

Frequency (rad/sec)

» Determinar la frequencia del marge de fase , el marge de fase i el coeficient d'error del
sistema controlat per un controlador P, a partir del diagrama de Bode de l'apartat anterior.
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d'aqui obtenim les seguient dades:
= 0.436 rad/sec; MF = 70°; Kv = 5/2.238 = 2.234

» Escollira=0.1 pertal de mantenir el marge de fase del sistema controlat al volar fixat
mitjancant el controlador P

a=0.1 =0.436*0.1 = 0.0436 rad/sec
« Escollir K=Kp
K=Kp=2.238

 Obtenir el diagrama de Bode de G'c(j)Gp(j) on G'c(s) és la funcié de transferéncia del
controlador Pl sense el factor K

G'c*Gp =_(1+als) = s+a . (Fer el diagrama de Bode d'aquesta funcio)

s(s2+4s+5) s2(s2+4s+5)
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» Determinar el nou marge de fase tenint en compte que la nova frequiéncia de tall

frequéncia a la qual:

= 1/k

1G'c(j)Gp()I

Pm=58.58 deg. (w=0.2035)

2571 dB, (w= 2.197)

Gm=
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d'aqui obtenim el marge de fase que sén 68° i la freqiiéncia de tall és 0.2035
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» Variar els parametres K i a fins aconseguir les prestacions de disseny establertes

Amb el que hem trobat a l'apartat anterior veiem gue el marge de fase és 68°, per tant se'ns compleix que r
o0 menys I'esmorteiment es 0.7. La freqiiéncia de tall és

|G'c(j)GpG )l = 1/k
1/k = 0.2035/0.436 = 0.47 d'aqui obtenim que la K = 2.13

Hem obtingut: a = 0.0436; K = 2.13, per verificar que es compleixen les especificacions grafiam les resposte
a una rampa i a un esglao.

La funcio de transferéencia a considerar sera
Ge = K(1+a/s) = 2.13(1+0.0436/s)

Gp = 1/ s(s2+4s+5)

GeGp =2.13(1+0.0436/s) = 2.13s+0.0929
S(s2+4s+5) s2(s2+4s+5)

I la funcio en llag tancat és:

M(s) =_GCGp = 2.135+0.0929

1+GcGp s4+4s3+5s2+2.13s+0.0929

Les arrels del polinomi caracteristic son:

Eigenvalue Damping Freq. (rad/sec)

—0.0490 1.0000 0.0490

—0.9385 + 0.1804i 0.9820 0.9557 (el sistema s'ens ha alentit molt)
—0.9385 - 0.1804i 0.9820 0.9557 (Hi ha pols dominants reals)
—2.0739 1.0000 2.0739

Les respostes a una rampa i un esglaé del sistema son:
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Aix0 es degut a I'efecte que el 0 ens produeix, hem de mirar de triar una altra a per minimitzar I'efecte d'aqu
0 sobre el nostre sistema.

S'ha variat la a fins a fi de baixar I'esmorteiment per intentar disminuir el sobrepic
La nova funcioé de transferéncia és: S'ha establer a = 0.0167

M(s) =_GcGp = 2.13s+0.05 (es un sistema de tipus 1)

1+GcGp s4+4s3+552+2.13s+0.05
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Els valors finals del controlador Pl s6n

K=2.13,a=0.0167

Ens compleix: esmorteiment menor de 5% i l'error en entrada rampa ja que
Degut a l'integrador aquest error és 0 (el nostre sistema és ara de tipus II)
6.5. DISSENY CONTROLADORS PD USANT DIAGRAMA DE BODE

La funcié de transferéncia d'un controlador PD en el domini freqtiencial és:
Ge(j) = K(A | +1)

El disseny de controladors PD consisteix en determinar K i A del controlador fins aconseguir que el sistema
controlat funcioni amb les prestacions desitjades.

El procediment de disseny de controladors PF fent servir el diagrama de Bode consta dels seglients passos

« Obtenir el diagrama de Bode de KGp(s) per al sistema sense controlar prenent K=Kp, essent
Kp el gyuany del controlador proporcional calculat a I'apartat 6.3

Gain dB
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» Determinar la frequencia del marge de fase , el marge de fase i el coeficient d'error del
sistema controlat per un controlador P, a partir del diagrama de Bode de l'apartat anterior.
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d'aqui obtenim les seguient dades:
= 0.436 rad/sec; MF = 70°; Kv = 5/2.238 = 2.234

» Obtenir el diagrama de Bode de KAsGp(s) fins a determinar el valor del producte KA que
proporcioni la freqiencia de tall i el marge de fase adequat

Hem d'obtenir el diagrama de Bode de la seguent funcié:
KAsGp(s) =_2.238*As (el diagrama de Bode d'aquesta funcio és
s(s2+4s+5)

perK=223A=1
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No presenta marge de guany i el marge de fase és 68.4°

5.8 per obtenir més o menys un marge de fase de

6 i s'ha establert una A =

5iA=

S'ha interpolat entre A
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2.238*5.8 =12.98

70°; s'ha obtingut que: KA

KA/K. Escollir

els valors adequats de K i A per tal d'obtenir un coeficient d'error estacionari, una freqiiéncia

de tall i un marge de fase desitjat

« Obtenir el diagrama de Bode KA(s+1/A)Gp(s) per a diversos valors de K i A

A l'anterior practica vam deduir que perqué complissim I'espeficicacié de l'error necessitavem una K>5,

2.6

12.98/5 =

5 A=

llavors agafem el cas limit: K

| en fem el diagrama de Bode de 12.98(s+0.385) = 12.98s + 5

S(s2+4s+5) s(s2+4s+5)
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= 3.03 rad/sec

MF = 63°,

Es creuen aquests valors correctes pel compliment de les nostres especificacions.

Per corroborar—ho obtindrem les respostes temporals del sistema amb el controlador enfront una rampa i d'

esglao:

El sistema en llag tancat és GpGc = 12.98s+5

1+GpGc s3+452+17.98s+5
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| enfront una rampa la seva resposta temporal és:
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Com es pot veure l'error es 1, per tant el sistema també ens compleix aquesta
Especificacio

Mirarem perqué la grafica de la resposta temporal ens dona tan rara:
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Les arrels del polinomi caracteristic son:
Eigenvalue Damping Freq. (rad/sec)
—0.2962 1.0000 0.2962

—-1.8519 + 3.6679i 0.4507 4.1089
—-1.8519 - 3.6679i 0.4507 4.1089

Veiem que tenim un pol dominant real i que , per tant, la funci6é se'ns aproxima a una de ler ordre, per aixo
sistema té aquesta resposta tan rara. Tot hi aixd aguest sistema ens compleix les especificacions desitjade:

6.6. DISSENY DEL CONTROLADOR PID

La funcié de transferéncia del controlador PID en domini freqtiencial és:
Ge(j) =K(+a) + KA]

J

El procediment de disseny de controladors PID en el domini frequiencial es pot expressar com la combinaci
d'un PI més un PD.

* gjust del controlador Pl, fent A=0
« Obtenir el diagrama de Bode de KGp(s) per al sistema sense controlar prenent K = Kp, essent

Kp el guany determinar a l'apartat 6.3
» Determinar la freqiiéncia de marge fase, el marge de fase i el coef. Error del sistema controlat
per un controlador P, a partir del diagrama de Bode
Aix0 s'ha fer a l'apartat 6.4. i els resultats han estat els segients:
= 0.436 rad/sec; MF = 70°; Kv = 5/2.238 = 2.234

e Escollira=0.1

Aa=0.1 =0.436*0.1=0.0436

« ajust del controlador PD, fenta =0
e escollir K =Kp

la Kp I'hem trobada a l'apartat 3 i és 2.238

« Obtenir el diagrama de Bode de KAsGp(s) fins a determinar el valor del producte KA que
proporcioni la freqiiéncia de tall i el marge de fase desitjat.

El producte KA s'ha determinat a I'apartat 6.5 i és 12.98
« Obtenir el diagrama de Bode de KA(1+1/A)Gp(s) per a valors de K i A=KA/K. Escollir els

valors adequats de K i A per tal d'obtenir un coeficient d'error estacionari, una freqiiéncia de
tall i un marge de fase desitjat
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KA/K s'han trobat a l'apartat 6.5 i s6n

Aquestos valors de Ki A

K=5 A=26

« ajust del controlador PID

 Escollir K i A obtinguts a I'ajust del PD i a de I'ajust del PI

2.6, K=5,a=0.0436

A=

» Obtenir el diagrama de Bode de G'c(j )Gp(j ) on Gc'(s) és la funci6 de transferéncia del

controlador sense el factor K

As2+s+a

G'c(s) =(sta) + As

SS

2.652+s+0.0436

GpGc'(s) =_s2+As+a

S2(s2+4s+58) s2(s2+45+5S)

Hem de fer el diagrama de Bode d'aquesta funcio, que es aquest:
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« determinar el nou marge de fase tenint en compte que la nova frequéncia de tall es la freqiiéncia

per la qual

1Gc'()*Gp( )l = 1/k

No presenta marge de guany i el marge de fase és: 99,5°, la freq de tall és 0.21 rad/sec
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Com que aguest marge que hem obtingut no ens val, intentarem buscar la K que ens faci complir les
especificacions establertes.

PHASE MAG W

—109.2050 0.2422 2.613

—110.0909 0.2374 2.656

Per un MF de 70° obtenim K =4.231 W = 2.651

K=4.23, A=2.6,a=0.0436

S'ha mirat la resposta temporal per un esglaé amb aquest PID
G(s) =4'23(2'6s2+s+0.0436) i s'ha obtingut que:

s2(s2+4s+5)

1.2

W
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o
(a3

0.4 4
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0 1b 2b Sb 4i] 50
Time (secs)
Com es pot veure, la resposta temporal és molt rara, mirem els pols i zeros de la funcié
Eigenvalue Damping Freq. (rad/sec)
—0.0548 1.0000 0.0548
—0.2252 1.0000 0.2252

-1.8600 + 3.3889i 0.4811 3.8658

-1.8600 — 3.3889i 0.4811 3.8658
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Els pols reals ens afecten molt a la resposta, ens l'alenteixen i per aixo tenen aquesta forma tan rara, hauri
d'intentar aconseguir reduir una mica el seu efecte variant la a

S'ha agafat la a obtinguda a I'apartat 6.3 ; a=0.1, llavors hem obtingut la seglent resposta:

1.2 T r r .

v |

Amplitude
- o o
N fa3] fas)

o
[N
'

0 20 40 60 g0 100
Time (secs)

Finalment s'ha determinat quina K ens donaria un sobrepic més proxim al 5%, s'han anat probant diferents
valors de K i finalment s’ha obtingut que una K de 6.5 ens donaba una resposta temporal com aquesta:

1.2

1 U

\//

0.8}

Amplitude
-
[ay}

0.4

02}

0 10 20 30 40 50
Time (secs)

| per una rampa
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Es compleix el requisit de la rampa i el requisit de I'esmorteiment, el del sobrepic es compleix tot hi que
després el sistema ens fa coses rares degut als pols reals, per intentar millorar el sistema es podria utlitzat
muntatge en cascada amb el controlador PID i el sistema i abans un filtre que aconseguis baixar I'efecte
d'aquests pols reals que tenim tan a prop de l'origen

DISSENY D'UN SISTEMA DE CONTROL REAL (1)
 Objectius

Amb aquesta practica es pretén realitzar la indentificacié d'un procés fisic real, amb caracteristiques d'una
forta no-linealitat i de dificil modelatge amb la finalitat d'obtenir un model matematic discret que descrigui la
seva dinamica. El sistema sobre el qual farem la identificacio es troba representat en la figura 1.

Potenciometre Ventilador
‘7
4
4
a

Figura 1

2. Descripcio del sistema
Es tracta d'un motor de corrent continua amb una hélix que impulsa el vent cap una placa lleugera i rigida (

porexpan), disposada verticalment en estat de repds i que per accio del vent impulsat, pot moure's entorn d
I'eix horitzontal a la qual esta fixada, describint un cert angle respecte la vertical.
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L'entrada del sistema sera la tensio aplicada al motor i la sortida, la tensié que ens déna un poténciometre.
El sistema es pot desglossar en diversos subsistemes connectats en série, de manera que la funcié de

transferencia global la podrem obtenir multiplicant les funcions de transferéncia parcials. Fent aixo s'obté la
seguent definicié del sistema global:

G(s) =_Vpotenciometre
Vmotor

Els subsistemes presents en aquest procés son el motor de CC, les hélices, el péndol amb la planxa de
porexpan i el potenciémetre. Podent-los esquemetitzar de la forma que mostra la figura 2

Vmot w r ] g Vpot
—p Motor | — Hélices —p DPcndol otenciometrg—P

Figura 2

» Motor CC: respon a un sistema de primer ordre

* Hélices: Es consideren que tenen un comportament proporcional

» Péndol: La pressi6 de I'aire que provoquen les hélices, provoca un moment sobre el centre massic ¢
la planxa, provocant el balanceig. El tipus de comportament d'aquest subsistema vindra donat pel
conjunt de moments que actuen sobre la planxa.

 Potenciometre: Es un amplificador operacional i t&¢ un comportament linial.

* Fonaments

Es molt important obtenir els models dels processos ja que la majoria de técniques de control digital avance
estan basades en un model del procés a controlar. Les técniques d'obtencié dels models dels processos, el
general, segueixen dos camins:

« Si la dinamica de model pot ser raonablement modelada mediant equacions diferencials, podem
obtenir un model continu del procés en el que, habitualment, faltara determinar certs parametres. Pe
obtenir aquests ens sera suficient conéixer la resposta temporal a una entrada grad unitari o obtenir
diagrames de Bode

« Si la dinamica del model és molt dificil de modelar en termes d'equacions diferencials, podem optar
per determinar directament el model del procés. Per fer—ho un primer pas seria establir una primera
estimacio dels ordres i del retard del nostre model i, posteriorment, aplicar alguna técnica d'estimaci
parameétrica per obtenir els parametres concrets del model.

Nosaltres ens trobem en el primer cas, per tant, el que farem sera trobar les equacions fisiques del sistema
» Modelat del sistema amb equacions fisiques

A partir del segient diagrama de forces plantejarem les equacions dels moments que actuen en el subsiste
Péndol+Planxa de porexpan:
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Fireg Cabal Aire
. +—
Faire '
‘7
‘7

Figura 3

Les lleis de la mecanica ens diuen, pel principi d'Alembert:

o0 Moments - I* =0

En aquest cas, segons el diagrama de la pagina anterior, els moments que actuen son:
Mpes = m*g*Rcm* sin

Mfr = f*

Maire = Fa*cos *Rcm

Substituint ens queda que:

m*g*Rcm* sin  + f* — Fa*cos *Rcm + I* =0 (EQ-1)

Sabem que el moment d'inércia d'una barra és

I = m*Rcm2/12

Per tant substituint | a I'expressié ens queda I'equacié que modelitza el sistema
m*g*Rcm* sin + f* — Fa*cos *Rcm + *m*Rcm2/12 (EQ-2)

On:

Rcm Radi del centre de masses (en m)

g Acceleracio de la gravetat (m/s2)

| Moment d'inércia d'una barra (kg*m2)

Fa Forca de l'aire (N)

f Forca de Rossament (N)

Acceleracié angular de la barra (rad/ s2)
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m Massa de la planxa porexpan (Kg)
Tenim els segiens valors:
g=981m/s2
m =22 g=0022Kg
» Problema: No coneixem els parametres f,Fa i Rcm.

En general en quansevol sistema que volguem identificar ens trobarem amb una série de parametres
desconeguts. Aquests poden ser classificats en 2 grups:

» Parametres que so6n facilment mesurables, en el nostre cas Rcm
» Parametres que s6n més dificils o impossibles de mesurar, ja sigui perqué la seva mesura Nnomés e:
pot fer amb aparells sofisticats o simplement, no podem accedir-hi, en el nostre cas Fa i f.
Per tal de poder fer la identificacié dels parametres desconeguts es fara el seglient
« Trobar el model lineal a partir de I'equacio (EQ - 2) que ens defineix el model no linial.
» Fer porces en el laboratori per tal de determinar parametres d'un sistema de segon ordre (n, , K)
5. Linealitzaci6 del model
» Donada l'equacio diferencial (EQ - 2) que modelitza el sistema planxa—péndol, es demana linealitzar-la
per angles petits (al voltant de zero). Aquesta imposicié ens permet donar com a valida I'aproximacio sin
= icos =1
m*g*Rcm* sin  + f* — Fa*cos *Rcm + *m*Rcm2/12 = 0 fent les substitucions:
m*g*Rcm* + f* — Fa*Rcm + *m*Rcm2/12 =0
 Determinar la funcié de transferéncia a llag obert (s) / Fa(s) a partir del model lineal.
L'expressio que s'obté sera I'equacié EQ-3. Completeu-la
m*g*Rcm* + f* — Fa*Rcm + *m*Rcm2/12 = 0 (fent transformades de Laplace)
m*g*Rcm* (s)+ f*s (s) — Fa(s)*Rcm + s2 (s)*m*Rcm2/12 = 0
(s) = Rcm

Fa(s) s2*m*Rcm2/12 + f*s + m*g*Rcm

(s) = 12/(Rcm*m)

Fa(s) s2 + (12*f/m*Rcm2)s+ 12g/r

» Observeu que la funcié de transferencia obtinguda es correspon amb un sistema de segon ordre de
tipus:
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Y(S) =_K*n2
R(S) s2 + 2 n* s+ n2

« Aixi doncs, si arribem a identificar els parametres del sistema ( n, K, ) podem trobar els parametres
fisics desconeguts i per tant acabarem obtenint I'expressio del model del sistema.

A partir d'aquesta equacié podem relacionar els parametres del sistema de segon ordre i relacionar—los am
els parametres fisics

n2 = 12g/r n=(12g/r) 1/2

2n* = 12*f/m*Rcm2 = 6*f/(m*Rcm2(12g/r) 1/2)

Kn2 =12/(Rcm*m) K =1/mg

6. Determinacio dels parametres del model mitjangant técniques d'identificacié de Sistemes

Un cop trobat el model lineal del subsistema del péndol, el que volem ara és determinar els parametres que
coneixem (f,Fa,Rcm). Per fer—ho hem vist que primer ens cal trobar els valors ( n, , K). Sabem que aquests
valors els podem trobar coneixent algunes de les caracteristiques de la resposta temporal del sistema a un
esglao.

Per tal de trobar aquesta informacio6 s'han fet probes sobre el sistema fisic global (tots els subsistemes).

» Hem aplicat a t=0.5 s, una tensi6 grad de 4 V, a I'entrada del motor, obtenint a la sortida del
potenciometre la resposta que mostra la figura 4 (NO REPRODUIDA AQUI)

Observacions: Sobre el sistema fisic nosaltres només podem obtenir la sortida del potenciémetre quan li
entren una tensié al motor. Per tant estem obtenint la resposta del sistema global que correspon a la fig.2,
canvi a nosaltres ens interessa identificar els parametres a partir del subsistema del qual he obtingut el moc

linear, el subsistema péndol + planxa. En aquest subsistema hi entra una forga (la forga de I'aire Fa) i s'obt¢
com a sortida un angle . Aixi doncs, I'esquema de la figura 4 és la resposta a:

Vpotenc = _Fa *_ * Vpotenc
Vmotor Vmotor Fa

Segons les especificacions donades a I'apartat 2 sobre el comportament de cada un dels subsistemes, pod
expressar:

Vpotenc = Kle-Tds * _K2*K3* n2

Vmotor Ts+1 s2+2 ns + n2

Per tal de no complicar la identificacié del sistema considerarem que la dinamica del motor és molt més
rapida que la de la planxa de porexpan, el qual significa que els dos pols complexes s6n dominants. Fent
aguesta consideracio I'expressié anterior ens queda de la forma:

Vpotenc = K1K2*K3* n2__ *e-Tds

Vmotor s2+2 ns + n2
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» K3 és la constant que ens relaciona l'angle (en rad) amb la tensié i que mesurant—la en el laboratori
ens ha donat un valor de K3 = 6,37

« K1i K2 les trobarem a partir de I'estudi de la resposta de la figura4
En el nostre sistema global I'expressié de (EQ-4) seria substituida per I'expressio de (EQ-5)
Nota: Com aclariment direm que tot i veure a partir de la figura 4 que tenim un sistema de tercer ordre, per |
forma de la resposta, nosaltres I'aproximarem a un sistema de 2on, segons pols dominants ja que son els
sistemes que millor coneixem.
Identificacié: Sobre la resposta de la fig.4 veiem que podem extreure els valors dels segiients parametres:
Tpic = 1'1 sec Temps de pic
Mpic = 4'12 V Magnitud del sobrepic
Td = 025 sec Temps de retard
La sortida del sistema controlat se'ns estabilitza a 4'1 V (aprox)
Com es pot observar el sobrepic és molt baix, de I'ordre del 3%. Quan ens trobem amb aquests casos el
parametre de sobrepic i temps de pic no ens serveixen per identificar el sistema. La identificacié sera molt
més bona si utilitzem el parametre temps de pujada, que podem extreure de la figura 4 i que té un valor de:
Tpj = 0'12 sec Temps de pujada (del 10% al 90%)
La formula per obtenir el temps de pujada és

Tpj* n = 1-0'4167 +2'917

« A partir dels valors anteriors extrets del grafic de la resposta temporal de la fig.4 trobar els parametres (n
, K) Corresponent a la funcié de transferéncia de 2 ordre(EQ-5).

K = K1K2K3. Podeu utilitzar les formules del temps de pujada per trobar n i el sobrepic per calcular
I'esmorteiment

« A partir del sobrepic determinarem I'esmorteiment del sistema
SP =exp(- /(1-))
0'03 = exp(- /(1-) 1/2) In 0'03 = - /(1-) 1/2
2*In 0'03 = - /(1-) Operant
0.7106 = /(1-)
1.7106 =1 =0.765 (Esmorteiment del sistema)
Cal tenir en compte que la que hem trobat no és la real, s'hauria d'utilitzar algun altre parametre que no el

sobrepic. L'esmorteiment real del sistema s'acostara molt més a 1. A partir del temps de pujada determinare
la freqliéncia del sistema
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Tpj* n = 1-0'4167 +2'917
0'12* n = 1-0'4167 +2'917 =1-0'4167*0.765 + 2'917*0.7652
0'12* n = 2.387 _n_=19.89 rad/sec
« la K total la obtindrem comparant valor final de sortida i valor d'entrada
K=Vout =41 =1.025
Vin 4

* A partir dels parametres anteriors i la funcio de transferéncia trobada (EQ-3) identificar els parametres
K1,K2,f,Rcm

* A partir del que hem trobat abans sabem:
n=(12g/r) ¥2 n =19'89 rad/sec
= 6*f/(m*Rcm2(12g/r) 1/2) = 0'765
K2 =1/mg
* Substituint determinem tots els parametres que no sabem
19'89 = (12g/r) ¥
395.6 = (117.7/Rcm) Rcm = 0.298 m
K2 =1/mg = 1/0.022*9.81 K2 = 4.633
K1K2K3 =1.025
K1*4.633*6.37 = 1.025 K1 = 0.0347
0.765 = 6*f/(m*Rcm2(12g/r) 1/2)
0.585 = 36*f2/(m2*Rcm4*12g/r)
0.585 = 36*f2/(0.02220.2984*395.56)
f2 = 2.4387e-005f = 0.0049
» Donar I'expressio de la funci6 de transferéncia (EQ—-3) amb els valors dels parametres

(s) = 12/(Rcm*m) = 1833

Fa(s) s2 + (12*f/m*Rcm2)s+ 12g/r s2 + 30.41s + 395.6
» Donar I'expressio de la funcié de transferéncia (EQ-5)

Vpotenc = KI1K2*K3* n2__ *e-Tds =_405.5 *e—0'25s
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Vmotor s2+2 ns + n2 s2 + 30.41s + 395.6
7- Simulacio del model lineal obtingut mitjangant SIMULINK

Arribats a aquest punt ja tenim el model del sistema fisic real. Per tal de veure si el model calculat es
comporta d'igual forma que el fisic caldra entrar en una fase de testeig del model.

Com a comprovacio6 de que el model lineal obtingut és valid es demana fer una simulacio del sistema obting
amb SIMULINK. Representeu la sortida del sistema per una entrada grad de 4V i comproveu si es correspo
amb la resposta temporal de la fig 4

4055 D,
> 52+30.415+395 56 »

Step Input

T t
'SZTE;? Transfer Fen Graph

Per una entrada de 4V gra0 unitari la resposta ha estat de:

5 : : :
S M
| EESRR
R  e.HH
O S—
. : ! !
0 0.5 1 1.5 2
W (volt) Time {second)

Comparant aguesta grafica amb la que ens donen a I'apartat 4 veiem que son forga semblants tot hi que a |
la fig—4 hi ha moltes discontinuitats. Es pot veure que l'instant en que es produiex el sobrepic és a 0.97 s, i «
havien dit que apareixia a 1.1 s aix0 es l'error que hi ha al agafar la linialitzacié dels parametres i a utilitzar |
formula del sobrepic, que es molt inexacte perque el que ens apareix es molt petit.

La senyal s'estabilitza a 4'1 V a més o menys 1.2 sec en canvi en l'altre hi ha certes oscilacions i s'estabilitz
pels volts d'1.6 sec.

8- Simulacio del model no linealitzat i comparacié amb el model linealitzat

de la mateixa manera que abans hem simulat el model lineal per SIMULINK, ara es demana simular amb
aguest paquet el model no lineal.

» Implementar el model no lineal en blocs SIMULINK a partir de I'equacio diferencial no lineal.
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m*g*Rcm* sin + f* — Fa*cos *Rcm + *m*Rcm2/12 =0

valors obtinguts: m = 0.022 kg, Rcm = 0.2976 m, f = 0.0049, g = 9.81 m/s2

Substituint queda:

0.0642* sin + 0.0049* + 0.00016237* = 0.2976*Fa*cos arreglant—ho
+30.18 + 395.15 sin = 1833*Fa* cos

Aquesta es la funcié que tenim per introduirla en el SIMULINK

En el simulink es fa la simulacié del sistema seguent:

> 3 |l =
+
Step Input >}j L L

KA1 Product Sum Gain |ntegrator  Integratort K3 Graph
MATLAB <
@ Function
mgRecm MATLAB Fen MATLAB
Function -+
Rem MATLAB Fend

Gain1

[
|
1
|
1
1
1
B e e T
1
1
1
1
1
|
1
i S B M S | B

2 3
Time (second)

E=N
(]

No es correspon exactament amb el model trobar a I'apartat lineal, en aquest el sobrepic és quasi nul, es p«
dir que I'esmorteiment del sistema és de 1 aproximadament.
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Tot hi aix6 es considera que el model lineal és valid per angles petits

« A partir del diagrama en SIMULINK que heu representat, trobar quines tensions cal aplicar al
motor per tal d'obtenir els seglients angles de sortida

Sabem que la constant del potencidometre és 6.37 per tant podem comparar amb voltatges

out Vpot Vin

10 1.57 1.32
20 3.14 2.87
30 4.71 4.85
45 7.07 10.9
25 3.93 3.85

Utilitzant el model no lineal els resultats aproximats sén aquests, es pot veure que el Vin a 45° es separa
moltissim del de 30°

» Comparar les respostes temporals entre el model lineal i el no-lineal. Per fer-ho es demana que
prenent els Vin trobats de la taula sobre el model no lineal s'apliquin aquests valors com a entrada
grad del sistema SIMULINK del model lineal. Comparar les sortides dels angles i les respostes
grafiques

Ara s'ha agafat el model no lineal i s'han obtingut els angles a partir del voltatge

out Vpot Vin (no Lin) Vin (Linear)
10 1.57 1.32 1.53
20 3.14 2.87 3.06
30 4.71 4.85 4.59
45 7.07 10.9 6.89

S'han comparat les grafiques del sistema linial i del no-linear per tots els valors de la taula

Angle 10°
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* A partir dels resultats anteriors, dir a partir de quins angles el sistema deixa de ser lineal

Veient els resultats podem apreciar que a una franja entre 30° — 45° el sistema ens deixa de ser lineal. Pod
intentar averiguar més punts per determinar més exactament on hem de deixar el sistema lineal.

out Vpot Vin (no Lin) Vin (Linear)
30 4.71 4.85 4.59
315 4.95 5.23 4.83
33 5.18 5.75 5.05
35 5.5 6.42 5.37
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A partir dels 32° Aproximadament el sistema deixa de ser lineal i el nostre model lineal ja no ens he serveix
Aix0 es degut a qué les simplificacions ja no ens funcionen:

Cos 32 0.85 cos 0 = 1 (aproximacio ja molt dolenta)

Sin 32 0.53 =0.56

DISSENY D'UN SISTEMA DE CONTROL REAL (1)

« — Enunciat del problema de control

En aquesta practica dissenyarem un sistema de control per tal de controlar la posicié de I'eix del sistema

format per la planxa i el ventilador presentat en la practica anterior..

Potenciometre Ventilador

“—
<
<
“——

Figura 1

» Donar I'expressio de la funcié de transferéncia (EQ-5)

Vpotenc = K1K2*K3* n2__ * e-Tds =_405.5 *e-0'25s

Vmotor s2+2 ns + n2 s2 + 30.41s + 395.6

A partir de la funcié de transferéncia que varem obtenir de la practica 7

N

oons'ig'r}a @ Gs(s) Gp(s) p03|(>3|o
POSICIO - de l'eix
Controlador Motor-CC

H(s)

sensor

Les especidicacions de disseny que s'han fixat per la resposta temporal del sistema controlat son les segle
 La resposta del sistema controlat ha de presentar un sobrepic inferior al 5%
* L'instant en qué es produeix el sobrepic ha d'ésser igual a 0.1 sec.
* El sistema dominant presenta 2 pols dominants
« L'error estacionari davant una consigna graé ha d'ésser igual a O

Es demana
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» Determinar quina ha d'ésser la posicio dels pols del sistema controlar per tal de complir les
especificacions de disseny

» Determinar quin és l'ordre del sistema i el seu error estacionari davant d'una entrada en forma de
grad i en forma de rampa.

a)

Per les quatre condicions segilients ens imposen els seguents requeriments:

» SP < 5% d'altres practiques sabem que > 0.692
* Tp<0.1sec

Tp=_n= = >44'43
n*(1-)1/2 Tp*(1-)1/2 0.1*0.707
« El sistema presenta 2 pols dominants
Podem muntar I'equacié del sistema de 2on ordre a partirde ni

KIK2*K3* n2__ = 1.025*44'442 = 2024

S2+2 ns + N2 s2 + 2*0.7*44'44s + 44'42 s2 + 62'2s + 1975
Solucionant el denominador veiem que els pols dominants sén:
31'1 + 31'75j | Sabem que perque un pol sigui recessiu cal que estigui almenys a una
31'1 - 31'75j | distancia de 10 respecte els pols dominants
300 Establim el pol a una distancia més o menys 10 vegades els pols dominants
« L'error estacionari davant un gra6 0

Per satisfer—ho cal que el tipus del sistema sigui |, que presenti 1 integrador en la seva funci6 de transferén
en llag obert.

b)

Per determinar—ho podem entretenir—nos a fer el limit o a utilitzar la susodicha taula dels errors en funcié d
tipus del sistema

Gra0 : Per un sistema de tipus 0, l'error és 1/1+Kp
En el nostre sistema:

Kp = Lim Gp(s) = K =1'025

s—>0

Ess = 1/1+Kp = 1/2.025 = 0.49
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Rampa: Per un sistema de tipus 0, I'error és infinit, no ens acostem mai a la rampa.
8.2. Disseny del controlador PID fent servir el métode d'assignacié de pols

El controlador que es proposa utilitzar per a aconseguir controlar la inclinacié de la planza és un controlado
PID

Gce(s) = Kp + Ki/s + Kds
L'ajuste d'aquest controlador es fara fent servir el métode d'assignacié de pols simple

El disseny de controladors mitjancant el métode d'assignacio de pols simple consisteix en determinar el
controlador a partir de la condicié de qué el sistema controlat tingui els pols en el lloc desitjat, sigui:

Gce(s) = Nc(s) / De(s)
La funcié de transferéncia del controlador i sigui:
Gp(s) = Np(s) / Dp(s)

La funcié de transferéncia del procés a controlar, llavors la funcié de transferéncia del sistema controlat
suposant que la realimentaci6é és unitaria valdra:

T(S) =_Nc(s)*Np(s)

Dc(s)Dp(s) + Nc(s)Np(s)

A partir de les especificacions de disseny determinarem la posicié dels pols del sistema controlat i per tant e
polinomi denominador P(s) de la funcié de transferéncia del sistema en lla¢ tancat T(s). lgualment el polinor
desitjat amb el polinomi a ajustar determinarem els parametres del controlador

Aquesta equacio s'anomena equacio diofantica.

Es demana determinar:

» Determinar I'expressio de I'equacio diofantica prenent com a controlador un controlador PID i com a mode
del sistema ventilador + planxa obtingut de la practica anterior. (nota: per al disseny del controlador no
tindrem en compte el retard pur que s'observa que presenta el sistema, ja el considerarem més endavant

» Determinar quina és I'expressié del denominador desitjat P(s) a partir de les especificacions de disseny d
problema i tenint en compte que el sistema controlat presenta dos pols complexes conjugats dominants

 Plantegeu els equacions de disseny que se'n deriven

» Resoleu el sistema d'equacions obtingut per a determinar els valors dels parametres del controlador PID:
Kp, Ki i Kd

a)

De les funcions de transferencia anteriors:

Gce(s) = Kp + Ki/s + Kds = (Kds2 + Kps + Ki) /' s

Gp(s) = 405'5/(s2+30.35+395.6)
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Gd(s) = Ge(s)*Gp(s) = 405'5(Kds2 + Kps + Ki)/( s3+30.352+395.65)
A partir d'aqui obtenim la funci6 de transferéncia en llag tancat:

T(S) =_Nc(s)*Np(s) =_405'5(Kds2+Kps+Ki)

Dc(s)Dp(s)+Nc(s)Np(s) s3+(30'3+405'5Kd)s2+(395'6+405'5Kp)s+405'5Ki

b)

A partir del polinomi que hem obtingut a I'apartat 8.1.:

Multipliguem els pols complexe conjugats dominants i el pol real recessiu.

P(s) = (s+300)*(s2 + 62'2s + 1975) = s3 + 362'5s2 + 206355 + 592500

El pol esta a una distancia d'aproximadament 10 dels complexes, per tant és recessiu.
c)

Igualant els polinomis P(S) i el denominador de T(S) obtenim I'equacié diofantica:

s3 + 362'582 + 20635s + 592500 = s3+(30'3+405'5Kd)s2+(395'6+405'5Kp)s+405'5Ki
D'aqui en deriven 3 equacions independents:

362'5 = 30'3+405'5Kd

20635 = 395'6+405'5Kp

592500 = 405'5Ki

d)

Resolent les 4 equacions obtenim els segiients valors dels parametres del controlador PID
Kd = 332'2/405'5 = 0'82

Kp = 20239'4/405'5 = 49'9

Ki =592500/405'5 = 1461

8.3. Simulacid del sistema controlat amb el SIMULINK

Una vegada dissenyat el controlador es demana comprovar el seu funcionament en simulacié. Per aixo0 es
proposa utilitzar el simulador SIMULINK

» Simular el funcionament del sistema de control fent servir com a model de simulacié de la planta el mode
ventilador—planxa lineal obtingut en la practica anterior. Es compleixen les especificacions de disseny?
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Com podem apreciar la resposta no compleix les especificacions de disseny perqué te un sobrepic molt
superior al 5%, aix0 es degut als 0s que tenim en el denominador.

Simular el funcionament del sistema de control utilitzant el model no lineal obtingut en la practica
anterior. Qué s'observa? Proveu el comportament del sistema de control per diferents valors de
consigna. Per a quin rank de consignes funciona millor el sistema de control, perque?

n

Step Input

Gain Integratotntegratoq

MATLAB <
@ Function

mgRem MATLAB Fen

MATLAB
Function

MATLAB Feni
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S'han fet les proves per diferents consignes i el sistema ens ha sortit inestable per a totes les consignes qu
hem donat. Per tant, el controlador que hem obtingut pel model lineal no ens funciona pel model no lineal.

Aix0 es degut a qué el model lineal no s'ajusta totalment al no-linial. Les simplificacions que hem fet i el fet
d'utilitzar el sobrepic per determinar la funcié de transferéncia del sistema ens fa que els pols no estiguin al
lloc adequat i per tant, el sistema se'ns torni inestable: Segurament el pol que hem suposat a S+300 esta si
en la regié inestable.

El controlador no funciona per a cap rang de consignes

8.4. Implementaci6 del controlador PID

Suposem que ara volem implementar el controlador PID fisicament per a controlar el ventilador. Tenim due:
opcions:

» Implementaci6 analdgica del controlador PID
La implementacié analdgica del sistema consisteix en determinar un circuit electronic que tingui una funcié

de transferéncia com la del PID. L'ajust del PID consisteix en I'ajust dels parametres dels components del
circuit electronic. En aquesta practica es proposa el circuit electronic de la figura per a implementar el PID:

Obtenci6 de la funci6 de transferéncia d'aquest circuit

Amp.Op 1: G1(s) = ~R5/R6 Proporcional
Amp.Op 2: G2(s) = -1/C1R7s Integrador
Amp.Op 3: G3(s) = ~R8C2s Derivador

Amp.Op 4: Gt(s) ==R1*G1(s) = R1*G2(s) = R1*G3(s)

R2 R3 R4
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Gce(s) =R5R1 + R1 + R1IR8C2s

R2 R6 C1R7R3s R4

El nostre controlador PID té la seglient funcié de transferencia:
Gce(s) = 0'82s + 49'9 + 1461/s

Suposicions:

1- C1 =1nF, C2 = 1 F (condensadors fisicament possibles)
*R2=R3=R4=R1=330K

Llavors obtenim els seglients parametres:

0'82 = R8/10000000 R8 = 820 K

1461 = 109/ R7 R7 = 685 K Aprox. 680 K

49'9 =R5/R6 R5=1 M ; R6 = 20K

Aquestes resisténcies pertanyen a la série E-12, per tant es poden trobar en un laboratori d'electronica. La
seva tolerancia és d'un 10%.

Implementacié analdgica del controlador PID
En l'actualitat resulta més facil implementar el PID usant un ordinador. Ens fa falta una tarjeta d'adquisicio c

dades que ens faci la conversié analogic—digital i digital analogic i el programa que ha d'executar I'ordinado
per comportar—-se com un PID, tal com s'indica a la figura

» Equacio discreta del PID
La funcié de transferencia d'un PID en el temps continuu es descriu com:
G(s) = Kp + Kds + Ki/s
Kp Es un guany constant Kp, no es pot realitzar una resolucié infinita
Kd aproximem la derivada de la seglient manera:
df(t) = 1 * [f(KT) - f(K-1)T)]
dit) T
Aplicant la transformada z ens queda:
Gd(s) = Kd (z-1)/Tz
Ki Aproximem la integral utilitzant la regla dels trapezis

"f(Kt) = "f((K-1)t) + O'5T [ f(KT) + f(K-1)T)]
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Aplicant la transformada z ens queda:
Gi(z) = Ki*T(z+1)/2(z-1)
La funcié de transferéncia total del PID discret ens queda:

Ge(z) =(Kp + TKi/2 + Kd/T)z2 + (Tki/2 = Kp — 2Kd/T)z + Kd/T

z(z-1)
T = temps de mostreig
Kp = Constant proporcional PID en domini continu
Kd = Constant derivativa PID en domini continu
Ki = Constant integral PID en domini continu
» Determinacio dels parametres del PID digital
Substituim pels nostres parametres:
Kp = 49.9; Kd = 0.82; Ki = 1463
Obtenim:
Gc(z) =(49.9 + 731.5T + 0.82/T)z2 + (731.5T — 49.9 — 1.64/T)z + 0.82/T
z(z-1)

Aquest controlador seria marginalment estable perqué les arrels del polinomi caracteristic estan a dins del
cercle unitari |z| = 1, pero n'hi ha una a (z-1)

8.5. Efecte dels zeros del controlador: Assignacio de pols completa

Si observem la funcié de transferéncia del sistema controlat obtinguda a I'apartat 8.2 podem veure que si be
denominador és aquell que nosaltres haguem fixat per disseny P(S) el numerador ha canviat Respecte a fu
de transferéncia del sistema sense controlar, per tant si obserbessim la resposta del sistema controlat veur
gue no es correspon exactament amb la resposta desitjada. Aixo es deu a que hem afegit al numerador del
sistema controlat un zero respecte a la funcié del sistema sense controlar. Per evitar aquesta addici6 d'un z
que fa que la resposta no es correspongui exactament amb la desitjada hem de variar lleugerament l'estruc
del sistema de control. Simplement restructurant la posicié del controlador dins del sistema de control tal co
s'indica es pot comprovar que si recalculem la funcié de transferéncia del sistema controlat s'obté:

T(S) = Np(s) = 405'5

Dc(s)Dp(s)+Nc(s)Np(s) s3+(30'3+405'5Kd)s2+(395'6+405'5Kp)s+405'5Ki

Aquest tipu de controlador s'anomena d'assignacio de pols completa, perque només modifica el
denominador del procés sense fer variar el numerador.
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8.6. Efecte del inestabilitzador del retard

Si tenum en compte el retard present en el model del sistema observarem al simular el sistema controlat qu
seu efecte és el desestabilitzar el sistema.

consigna -
" td FPosicio Eix
P Gp(s) —m e >

Ventilador Retard

Si determinem la funcié de transferéncia del sistema realimentat veurem que el retard apareix com un terms
més del denominador. Normalment I'efecte d'aquest terme és desestabilitzar el sistema realimentat.

T(S) =_Gp(s) * e-std _
1+Gp(s)*e-std

Per a poder estudiar I'efecte inestabilitzador del retard del sistema utilitzarem els diagrames de Bode. Es
demana:

* Fent Us del diagrama de Bode determinar el marge de fase del sistema sense tenir en compte el retard i 1
s del lloc d'arrels determineu la Klimit per aquest sistema.

» Fent us del diagrama de Bode determinar el marge de fase del sistema si tenim en compte el retard i fent
del lloc d'arrels determineu la Klimit per aquest sistema.

* Veient els resultats dels apartats anteriors qué podem afirmar sobre |'estabilitat del sistema de control d'u
sistema amb retard.

a)
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Agafem la funcio de transferéncia del ventilador solament:
Gp(s) =_405'5 realimentat: 405'5
S2+30'3s+395'6 S2+30'3s+801'1

Fent el diagrama de Bode:

Gain dB

Phase deg

-180

Frequency (rad/sec)

No cal utilitzar el lloc d'arrels per determinar la K limit. Sapiguent que és un sistema amb només 2 pols i caj
zero, i mirant les trazes de Bode podem veure que mai es creuara la linia dels —180°, per tant, la klimit sera
infinit.

b)

Per fer—ho necessitem utilitzar I'aproximacié de Padé. Aquesta aproximacié ens diu:

e-std =1 - tdS/2

1 +tdS/2

Llavorens la funcié de transferencia ens queda:

Gp(s) =_405'5*(1 — tdS/2)__ = 405'5-202'25Tds

S2+30'3s+395'6*(1 + tdS/2) ¥2TdS3+ (1+%2Td)s2+(30'3+ 15'7Td)s+395'6
Td = 0'5 El retardo és de 0'5 sec en el sistema

Llavors sustituint la funci6 de transferéncia en obert ens queda:
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Gp(s) =_1622 — 404'4s

$3+552+152'6s+1583

Per intentar trobar la Klimit, buscarem quan els 3 pols s6n positius amb un lloc d'arrels per intentar aproxim

la Klimit:
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Frequency (rad/sec)

Advertencia La igualtat de Padé només serveix per a freqliéncies petites, a freqliéncies grans no ens serve

degut a qué es una série de Taylor i a valors grans I'error que cometem es molt gran i no ens serveix. Per t:

el diagrama de Bode només es valid per a baixes frequiéncies

(entre 0'1 i 10 Hz aproximadament)
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Veiem que sempre és inestable per qualsevol K positiva. Per tant el que ens fa el retard es desestabilitzar—
el sistema.

8.7. EL PREDICTOR SMITH

La funcié de transferéncia amb el predictor Smith, és
T(S) =Gp(s)Gce(s)*e=Tds

1+Gp(s)Gce(s)

Calculant-la segons els nostres valors

Gp(s) =_405'5  Gc(s) = 0'82s2+49'9s+1461
s2+30'3s+395'6 s

T(S) =332'5s2 + 20234s + 592450*e—-0'5t

s3 + 362.8s2 + 20630s + 592500

Fent us del simulink amb el PID de l'apartat 8.2, comprovar que s'obté la mateixa resposta que a
l'apartat 8.3 llevat d'un retard.
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Disseny del controlador PID fent servir el metode de Ziegler Nichols

En aquest apartat, ajustarem els parametres d'un controlador PID analdgic que ens permeti controlar el pro
seguint el procediment empiric d'ajust en lla¢ tancat de Ziegler—Nichols.

El procediment consisteix inicialment en col.locar un controlador de tipus proporcional P, amb un guany pet
i obtenir la resposta del sistema controlat a una consigna de tipus grad. A continuacid, augmentarem el gua
del controlador i tornarem a aplicar un grad. Aquest procés s'anira repetint fins a obtenur una resposta
oscil.latoria mantinguda del sistema controlat. Una vegada aconseguida aquesta oscil.lacié6 mantinguda,
anotarem el guany critic que I'ha produida Kpc aixi com el periode de l'oscil.lacié Tc

Segons Ziegler—Nichols el parametres del controlador son:

K Ti Td
PID ' ek -
Controler 0'6Kpc 0'5*Tc 0'125Tc

PI Controler [0'45Kpc  |Tc/1.2
P Controler |0'5Kpc

On la funcié de transferéncia el controlador PID és:
Gce(s) = K(1+ 1/TiS + Tds)

Es demana:
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» Fent us del simulink i del model de la planta del sistema ventilador—planxa i sense tenir en compte el reta
determineu els parametres d'un controlador PID pel métode de Ziegler—Nichols que us acabem de
presentar:

a B P BN =
Step Input $4430.3s4405.5

Transfer Fen Augr-aspc:le

S'han anat provant diferents valors de K i s'ha aconseguit aquesta resposta per una K de:
K=2
T=0.1sec

* Fent us del SIMULINK comproveu que el controlador PID aconsegueix controlar adequadament el sistem
format pel ventilador-Planxa .

El sistema controlat segons la K i el T, el PID ens queda aixi

K=12; Ki=16; Kd = 0.0125

e yl 055 FEI

X o 52+30.35+306 .5

PID Controller |
Transfer Fen Au;(;orfpcrfle

La resposta pel sistema controlat és la seglient amb el PID de Ziegler—Nichols:
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e R A e

I B Lot CECT TP PEEPRET SRR

D2f-F--mm b mm e e

0 0.1 02 0.3 0.4 0.4
Time (second)

Podem veure el que el sistema controla satisfactoriament el sistema, nosaltres podriem variar els parametr
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del controlador PID per obtenir un millor controlador:

 Si ara es te en compte el retard, fent us del que hem vist en aquesta practica com eleminarieu el seu efec
de forma que no haguéssiu de redissenyar el PID obtingut per Ziegler—Nichols.

Per fer-ho hauriem d'utilitzar el predictor d'Smith, ja que aquest ens treu el factor de retard del denominadc
fa que el sistema no se'ns inestabilitzi. La nova funcio de transferencia en lla¢ tencat seria:

T(s) =_Gp(s)*Gc(s)*e—Std
1+Gp(s)Gce(s)

També es podria intentar utilitzar el métode de Ziegler—Nichols en lla¢ obert enlloc del que utilitzem que és
en llag tancat. Funciona si T/L > 4, en el nostre cas no funcionaria.

» Quina avantatge creus que presenta un metode empiric com el de Ziegler Nichols davant de métodes
algebraics com el d'assignacio de pols:

Els avantatges son
» No cal conéixer la funcié de transferéncia del sistema per aplicar Ziegler—Nichols
» Es poden utilitzar per controlar sistemes que tinguin un ordre molt més gran que 2, aixd ens portaria
molta feina algebraicament en canvi aixi només es basa en fer probes al sistema i no perdre temps
amb calculs.
« Pot utilitzar—se per programar els PIDs autoajustables, els controladors autoajustables realitzen ells

mateixos les probes i llavors s'autoajusten amb els valors de Ziegler—Nichols. Llavors si volem
canviar—los podem regular-los nosaltres.

PART TEORICA DE L'ASSIGNATURA

Apunts Basics de Reqgulacio Automatica

Diagrames de Block i funcions de transferencia

Funcions de Transferéncia

G(s) = Y(s)/U(s) sortida Y(s) = L[y(t)] entrada U(s) = L[u(t)]

Normalment la funcié de transferéncia s'obté a partir de I'equacio diferencial

(sn +an-1sn-1+ ... + als + a0) Y(S) = (bmsm + bm-1sm-1 + ... + bls + b0) U(s)
G(s) = Y(s)/U(s) =bmsm + bm-1sm-1 + ... + bls + bO/sn + an-1sn-1+ ... + als + a0

Propietats de la funcié de transferéncia

« definida solament per un sistema linial invariant amb el temps

« Es la transformada de Laplace de la resposta a I'impuls

» Relacio entre la transformada de Laplace de la sortida i la de I'entrada
« Totes les condicions inicials del sistema son iguals a 0

« Es independent de I'entrada del sistema

« S'expressa en la variable complexa s de Laplace
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« Es estrictament propia si n > m, propia sin =m iimpropiasin<m
Polinomi caracteristic
Es defineix com la equaci6 que s'obté al igualar el polinomi de G(s) a0
sn+an-1sn-1+..+als+a0=0
Ens serveix per determinar I'estabilitat dels sistemes
Diagrames de blocks
S'utilitsen per a modelitzar sistemes. Estudiar les relacions de causa—efecte dels sistemes
Si es coneixen les lleis matematigues que gobernen el sistema

Els elements basics d'un diagrama de blocks sén:

SUMADOR FUNCIO TRANSFERENCIA
rs)
e [eE) = e M) g [T BETRE)
W -Sum Transfer fen
GUANY INTEGRADOR
e(s) Ke(s e(s) e(s)s
>—®—(2
Guany Integrator
RETARD PUR CONTROLADOR
e(s) e(s)e-ts
%{ —7m PFID }—
T'S:fg;“ PID Controller

Diagrama de Blocs model en realimentacié

Gels) ™ Gpls) >

Controlador Procés

His) j#—

Realimentacid

E(s) = R(s) - B(s)
Y(s) = Ge(s)"Gpis)™E(s)
B(s) = ¥(s) / H(s)

Llac obert
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Es agafar la funci6 de transferéncia sense considerar la realimentacio

G(S) = Y(S) / E(S) = Gc(s)*Gp(s)

Llac tancat

Es considera la realimentacio llavors la funcié de transferéncia en llag tencat és

M(S) = X(S) =_G(S)

R(S) 1+G(S)H(S)

Simplificaci6 de diagrames de Blocks

Normalment ens cal determinar G(s) i M(s) en un sistema de control en el qual hi ha moltes més coses: En
general la funcio transferéncia total ens permet simplificar el sistema perd perdem molta informacié de
com es comporta el sistema per dintre.

Totes les realimentacions es simplifiquen aixins:

M(S) = X(S) =_G(S)

R(S) 1+G(S)H(S)

Les funcions de transferéncia i guanys es treuen multiplicant:

R E(s) Y(s)
() ¥ s) | Gols) —— Gpis) s,
Controlador Procés
==l His)  fe——

Realimentacid

Simplificat queda:

R(s) . Ge(s)Gp(s)  |Y(s)
1+Ge(s)Gp(s)H(s)

Estabilitat de Sistemes de control linial

El primer requeriment per un sistema és la ESTABILITAT

Estabilitat absoluta Simplement és saber si és 0 no és estable
Estabilitat relativa Si un sistema és estable saber com d'estable n'és
Relacié entre arrels del polinomi caracteristic i I'estabilitat

G(S) = L(g() =" g(t)e-stdt
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Si una o més arrels estan a la part negativa del pla complexe llavors:

le-st| <1 Pero

Sinomés una de les arrels esta a la part positiva del pla complexe llavors:

|est | Aixo tendeix a ", que viola els requisits de I'estabilitat.

Per tant:

Una arrel no pot estar al semipla dret del pla complexe o0 no pot tenir part real positiva.

Criteri de Hurwitz

F(S)=ansn+an-1sn-1+ ... +als+ a0

On tots els coeficient sén reals, perque no presenti arrels amb parts reals positives:

« Tots els coeficients han de tenir el mateix signe
* Tots els determinants de Hurwitz han de ser positius

Els determinants de Hurwitz es formen com segueix
Dl=an-1D2=Jan-1an-3|D3=|an-1an-3an-5|
[anan-2||anan-2an-4|

|[0an-lan-3]

El criteri de Routh consisteix en arreglar aguests determinants
Tabulacié de Routh Per una equacié de 6¢é grau

F(S) =abs 6 + abs5 + a4s 4 + a3s3 + a2s2 + als + a0

s 6 a6 a4 a2 al

s5a5a3alo
s4abad4-aba3=Aaba2-abal=Bal00

a5 a5

s3Aa3-a5B=CAal —a5a0=DO00

AA

s2BC-AD=Ea000

C

s1ED-Ca0=F000
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E

s0a0000

Perque un sistema sigui estable cal que tots els coeficient de la lera columna, o sigui
a6, ab, A, C, E, F han de ser tots positius

A més el n° de intercanvis de signe en aquests elements indica el n® d'arrels amb parts positives que té
I'equacio.

Casos especials en la tabulacié de Routh
Es poden presentar les seglents dificultats aplicant la tabulacié de Routh:

« El primer element de qualsevol dels renglons de la taula de Routh és 0
* Tots els elements d'una fila de la taula de routh s6n 0

En el primer cas es reemplaca el O per un numero petit arbitrari
Exemple:
S4123
S3120
S2 0 3 En aqui reemplagem el 0 pel n° arbitrari
S2 3
S12-3/ =-3/ 0 es comporta com si fos un 0 al numerador
S0 3
El segon cas es dona si una o varies d'aquestes condicions poden existir
» L'equacio6 té almenys 2 arrels d'igual magnitud i signes contraris
 L'equacio té un o més parells d'arrels imaginaries
* L'equacio té parells d'arrels complexes simétriqgues amb el punt (0,0)
Per arreglar-ho es fa el segient:
« A(s) = 0 utilitzant els coeficients de la fila que es troba dalt de la renglera de 0Os

« Agafar la derivada dA(s)/ds =0
* Reemplacar la renglera de 0Os pels coeficients de dA(s)/ds =0

Exemple 2on Cas

S5187

S4484
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S3660

S2440

S100A(S) = 4s2 + 4s

dA(s)/ds = 8s

S1 8 0 Son els coeficients de dA(s9/ds

S04

L'us de la taula de Routh s'utilitza per determinar la Klim d'estabilitat tractant la K com si fos un parametre

També s'utilitza per determinar el valor critic de parametres pergue un sistema sigui estable, quan nosaltres

desconeixem alguns dels parametres.

Analisis de sistemes de Control en el domini del temps

Errors en I'estat estacionari, precisio

* resposta a un esglao (error de posicio)

R(t) = K*Us(t) R(S) = K/s

Kp = lim G(S)H(S) per s0 Ess = 1/1+Kp

 resposta a una rampa (error de velocitat)

R(t) = Kt*Us(t) R(S) = K/s2

Kv = lim S*G(S)H(S) per s0 Ess = 1/Kv

* resposta a una parabola (error d'acceleracio)

R(t) = Kt2*Us(t) R(S) = K/S3

Ka = lim S2*G(S)H(S) per s0 Ess = 1/Ka

Tipus Error Posicio |Error Veloc. |Error Accel.
@) R/(1+Kp) Infinit Infinit

I No en te R/Kv Infinit

Il No ente No en te R/Ka

1" No en te No en te No en te

R = Magnitud de I'entrada RU(s) en cas d'un esglad

El tipus del sistema el determina el n° d'integradors que té el sistema.

Especificacions en el domini del temps
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» Sobrepic maxim Yss — Ymax en %

* Temps de retard Td, es el temps que tarda a aconseguir el 50% del valor final
* Temps d'algament Tr, temps que tarda d'anar al 10% — 90% del valor final
» Temps d'assentament Ts, temps de permanéncia a una banda del X %

Normalment s'agafa un 5% o un 2%

1.2 T T r T

Yss

08¢

Amplitude
o
[ay)

0.4+

02+

tr

Time (secs)

Resposta d'un sistema prototipus de 2on ordre
G(S)=_n2

S2+2 n+ n2

La solucié d'aquest sistema ens dbna les arrels que son:

= nxjn*(1-)% = £jdon d=frequéncia esmorteida

» n = Distancia radial de les arrels a I'origen del pla s

e =Lapartreal de les arrels
» d = La part imaginaria de les arrels

0 td 2 tp tsg 8

10

» = Cosinus de lI'angle entre la linea radial de les arrels i I'eix negatiu

= COos
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j@

arrel

wn

® wnyl-c2

a=Cwn 0
€= cos i

Tipus de sistemes segons el parametre
* subesmorteit 0<<1sl1l,s2=- nxjn(l1-)1/2
* Criticament esmorteit =1 s1,s2 =-n
» Sobreesmorteit >1s1,s2=- nxjn(-1)1/2
* No esmorteit =0s1,s2=+jn
* Subesmorteiment negatiu -1<<0sl,s2=- nxjn(1-)% n>0
» Sobreesmorteiment negatiu <-1s1,s2=-nzxjn(-1)% n>0
Calcul de les especifiacions en el domini del temps
Sobrepic maxim i temps de pic
Tpic = temps quan es presenta el sobrepic
n*(1-) 1/2
SP = 100*exp[- /(1-) 1/2] SP = ymax - yss
* Si reduim I'esmorteiment, reduim el soprepic
Temps de retard i temps d'aixecament
n*td = 1+0.7 (td = temps retard = temps que assolim el 50% del valor)
n*td = 1.1 + 0.125 + 0.469
n*tr = 0.8+2.5 (tr = temps d'aixecament = temps que passem del 10 a 90% del valor)

n*tr =1 - 0.4167 + 2.917

e tritd proporcionals a iinversamenta n
 Si disminuim n augmentarem tr i td

Temps d'assentament

n*ts = —=1* In[0.05(1-) 1/2] temps d'assentament a una banda del 5%
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* té una discontinuitat per =0.691 (sobrepic del 5%)

» Per >0.691 ts és inversament proporcionala i n

» Per <0.691 ts és proporcional a i inversament proporcional a n
Efecte d'afegir un pol a la funcio de transferencia (lla¢ obert)
G(S)=_n2 Afegint un pol a la funcié de transferéncia:

s2+2 n+ n2

G(S)=_n2 Afegint un pol a la funcié de transferéncia:

(Ts+1)s2+2 n+ n2

06

0.5

Amplitude
o =
) E=N

o
(N

0.1f

D 1 L 1 L 1 1 1
0 2 4 B g 10 12 14 16

Time (secs)

L'adicio del pol ens afecta de la seglient manera:

* Generalment: Augment del sobrepic i temps de pic

« Augment del temps d'establiment

* Inestabilitzacio del sistema
Efecte d'afedir un zero a la funcié de transferéncia (llag obert)
G(S)=_n2 Afegint un pol a la funcié de transferéncia:
s2+2 n+ n2

G(S) =_(Ts+1)n2 Afegint un pol a la funcié de transferéencia:

s2+2 n+ n2
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187

16}

1.4}

—_
[
T

Y

o
fa']

Amplitude

o
fay]
T

0 1 2 3 4 5 6 7 g
Time (secs)

1 1

« Disminueix el temps d'aixecament

» Augmenta el sobrepic maxim

» Té l'efecte oposat del d'adici6é d'un pol
Els zeros i pols molt proxims tenen afectes contraposats i es poden menystenir els seus efectes.
Pols dominants de les funcions de transferéncia
Pol dominant Es aquell que te un efecte molt significatiu en la resposta transitoria

Pol insignificant No tenen pes especific en la resposta transitoria

Els pols que estan vora I'origen fan creixer ala resposta transitoria i decauran molt lentament en canvi que e
pols que estan lluny cauen molt rapidament.
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Regid Regid
pols pols

Insigni— Domi-
ficants nants

Entre les 2 regions : Insignificants i dominants hi ha una distancia D
D = Magnitud real 5 a 10 vegades major que els pols dominants.
Esmorteiment relatiu
Un sistema de 3er ordre 0 més que té pols dominants exemple:
M(S) = X(S) =_20 Té 2 pols dominants a 1+j =0.707
R(S) (s+10)(s2+2s+2) El pol real esa 10 D = 10
Es pot dir que r=0.707 (esmorteiment relatiu)
Per despreciar el pol insignificant cal tenir em compte:
 El valor final Yss ha de ser el mateix que el del sistema simplificat

M(S) = Y(S) =_20 = 20 = 20

R(S) (s+10)(s2+2s+2) 10(s/10 + 1)(s2+2s+2) 10(s2+2s+2)
Simplificaci6 de sistemes

Es desitjable en sistemes d'ordre alt poder—los simplificar a un ordre més baix que la seva resposta transist
sigui similar.

MH(s) = Sistema d'ordre superior = K (1+b1s+b2s2+ .... + bmsm)

1+als+a2s2+ ....+ ansn

ML(s) = Sistema ordre inferior = K (1+cl1s+c2s2+ .... + cqsq)

1+d1ls+d2s2+ ...+ dpsp
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K es la mateixa per assegurar que es mantingui el valor final en el sistema d'ordre baix

Calcul de ML(s)

MH(s) = 1+mls+m2s2+ .... + musu

ML(S) 1+l1s+I2s2+ .... + Ivsv

MH(j )2 = 1+e2s2+e4s4 +e6s6+...+e2us2u =1
ML(j )2 1+f2s2+f4s4 +f6S6+...+€2VS2V

Per la condicié que hem expressat a dalt:

f2 =e2,f4 =e4,.... —> El que resta es I'error que cometem
Igualant—ho obtenim que:

e2=2m2 -ml2

ed4 =2m4 - 2m1m3 + m22

e6 =2m6 - 2m1m5 + 2m2m4 - m32

e8 =2m8 - 2m1m7 + 2m2m6 — 2m3m5 + m42
f2=212-112=e2=2m2 - m12

f4 =214 - 21113 + 122 = e4 = 2m4 - 2m1m3 + m22
f6 = 216 — 21115 + 21214 - 132 = e6

f8 = 218 — 21117 + 21216 - 2I3I5 + 142 = e8 etc.

Exemple: Simplificacié sistema 3er grau a 2on grau

M(S) =X(S)=_8 =1

R(S) s3+6s2+12s+8 0.12553+0.75s52+1.55+1
Els pols estan tots a s+2

ML(S)=_1__

1+d1s+d2s2

M(S) =_1+d1s+d2s2 = 1+mls+m2s2

ML(S) 0.12583+0.75s52+1.55+1 1+I1s+I252+13s3

L1=151L2=0.75,L3=0.125
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f2=212-112=e2=2m2 - m12 1.5-1.52 = =075 = 2d2 - d12
f4 =- 21113 + 122 = e4 =m22 0.1875 = d22

f6 = —0.156 = Error que cometem

Tenim que: d2 = 0.433; d1 = 1.271

ML(S) = 1 =1 =231

1+d1s+d2s2 1+1.271s+0.433s2 s2 + 2.936s + 2.31

Comparacio de les respostes dels 2 sistemes

0.9

T

o
fa']
T

3er Ordre

o
et |
T

Zon Ordre

Amplitude
o o o o o
[ (3] R ()] [a3)

0.1

0 2 4 B 8 10 12 14
Time (secs)

o

L'aproximacio es tan mes bona quanta més dominancia de pols hi hagi.
Construccio de diagrames de Bode
En els diagrames de Bode ens podem trobar aquests cinc tipus de factors simples:
« factors Constants K
» Pols i Zeros en el origen: 1/s 6 s, integradors i derivadors
» Pols i Zeros a s = —a: Factors (s+a)
* Polts i zeros complexes: (1 +2 n+ n2)
» Retards purs e-Tds
Constant real K
Totes les K's son positives, per tant; KdB = 20*log K

El seu diagrama de Bdde és el seglent:
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b ecccccdacadacdaatla

20log K

gap uleg

Frequency (rad/sec)

fap aseyd

Frequency (rad/sec)

Pols i zeros a l'origen, 1/s i s Integradors i derivadors

Integradors

=1

El seu pendent és de —20 dB/dec i passen per 0 dB quan

El seu defasatge és de —90°

Derivadors

=1

El seu pendent és de 20 dB/dec i passen per 0 dB quan

El seu defasatge és de —90°

El diagrama de Bdde per un integrador és:
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Frequency (rad/sec)

fap m.mmca

0

1

1

107"

Frequency (rad/sec)

Pol Simple

La funcié del pol simple és 1/(Ts+1)

Guany

Asintotes | per <1/T el guany és 0 dB

| per >1/T Té un pendent de —20 dB/dec

Podem calcular—-ho més acuradament si

20*log (1+T2) 1/2

Guany

Defasatge

| per <1/10T el defasatge és Q°

Asintotes | per >10/T el defasatge és —90°

| passa per —45° quan = 1/T

Podem calcular—-ho més acuradament

=arctg (T)

Defasatge

El seu diagrama de Bdde és el seglent:
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Els zeros simples son iguals tret que els pendents son positius i defasatges també.

Pols Complexes

La funcioé de transferéncia és:

n2/s2+2 n+ n2

Tenim les seglents caracteristiques que hem de calcular

2)1/2

= n(1-

Frequéncia Ressonancia: r

Magnitud Pic : Mr=1/[2 (1-)1/2]

Ampla de Banda : BW = n[(1-2) + (-4 +2) 1/2] 1/2

Guany

Asintotes | per <1/T el guany és 0 dB

| per >1/T Té un pendent de —40 dB/dec

Ressonancia | Si <0707 Mr=1/[2 (1-)1/2]; r= n(1-2)1/2

| Si > 0'707 No presenta pic de ressonancia

Defasatge
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| per <n/10 el defasatge és 0°

Asintotes | per >10* n el defasatge és —180°

=n

| passa per —90° quan

El diagrama de Béde (Canviant esmorteiments) son els seglents:

n

W

Frequency (rad/sec)

Wn/10

o

50
-50

gp ueg

=
=
=)
=

fap aseyd

480 f------

n

WY

Frequency (rad/sec

Wn/10

)

Diagrama de Bode d'un pol complexe amb ressonancia
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Retard Pur e-Tds

El seu guany és 0 i el seu defasatge és aquest:

fap aseyq

10Td

d

T
Frequency (rad/sec)

Td/10

a Td/10 (-5'39), a Td (-53°) a 10Td (-530°)

Construccio del lloc geomeétric de les arrels (Conceptes Basics)

F(s) = P(s) + KQ(s) = 0 K entre (-",+")

+als+a0

P(s) = Sn + an-1sn-1 + ...

Enters positius.

Q(s) =Sm + b m-1sm-1m-1 +...+bls+b0nim

Propietats Basiques:

En sistemes de Control

Y(S)=_G(S) = __G(S)
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R(S) 1+G(S)H(S) 1+KG(S)H(S)

Condici6é de magnitud

G(S)H(S) = -1/K K entre (-",+")

Condicions d'angle

G(S)H(S) = (2i + 1) per K>0 (no es contemplen K's negatives)

Construcci6 del lloc d'arrels
G(S)H(S) =K(s+Z1)(s+Z2) ... (s+Zm)
(s+P1)(s+P2) .... (S+Pn)

Punts on K=0i K="

K = 0 Solucionar el denominador caracteristic (s+P1)(s+P2)
K =" Solucionar el numerador (s+Z1)(s+Z2) ... (s+Zm)
Aixi els pols sén quan K =01 els Zeros quan K ="

Exemple K(s+1)/s(s+2)(s+3)

Angles de les asintotes per K's positives

M = Ordre del numerador

N = Ordre del denominador: llavors:

Hi haura [N-M] asintotes que descriuen el comportament del lloc d'arrels per s="

Per valors grans de s, els angles de les asintotes seran:
i=2i+1*180°
IN-M| oniva des de 0 a [N-M-1]

Interseccio de les asintotes (centroide)

La interseccio de les [N-M| asintotes del lloc d'arrels la dona la segiient equacio:

... (S+PN)

i = parts reals dels pols de G(S)H(S) — pairts reals dels zeros de G(S)H(S)
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N-M
Exemples:
N° zeros = 0; N° pols = 2; asintotes a 90 i 270°
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Imag Axis
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N° zeros = 0; N° pols = 3; asintotes a 60, 180 i 300°

Imag Axis

' 1 '

na 1 1A 2

e ) P U U S U U N

N° zeros = 0; N° pols = 4; asintotes a 45, 135,225 i 315°
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Imag Axis

-0.5

O e N . QS

Analisi de I'estabilitat relativa amb el Diagrama de Béde

Marge de Guany i Marge de Fase

En el domini de la freq. es quantifica I'estabilitat amb el MG i MF

Marge de Guany

Un creuament de fase és quan la traza de Bode intersecta a —180°

p = Freq on hi ha el creuament de fase

<L(j p) = 180°

El MG es la quantitat de guany en dB que es poden afegir al lla¢ abans que el sistema es torni inestable:
KLim = MG MG = 20log (1/L(j p)

Si no hi ha creuament de fase llavors MG ="

Marge de Fase

Un creuament de guany és quan la traza de Bode intersecta a 0dB 6 L(j )=1
g = Freq on hi ha el creuament de guany

ILGg)l=1

el MP es l'angle en graus que la traza s'ha de girar al voltant de l'origen perque el creuament de fase passi
-180°

Llavors MP = <L(j g) —180°
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Si no hi ha creuament de fase llavors MG
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Frequency (rad/sec)

Si hi ha retards purs cal recordar que e-Tds " 1-tds/2

1+tds/2

O que quan =td l'angle es 53°, a =1td/10 l'angle és 5'3°

* Estabilitat: Klim (en dB) = MG

Un sistema es inestable si MG > 0dB o MP<Q°TIPUS DE CONTROLADORS

Controlador PI

Gce(s) = Kp + Kils = Kp(1+(Ki/Kp)s)/s

En el domini temporal:

Gce(t) = Kp*e(t) + Ki*"e(t)dt

Com podem veure té un 0 a —Kp/Ki i un pol a l'origen

Aventatges | desventatges del controlador Pl

un PI

Resposta a una entrada graé d
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107"

107
 Es pot saturar a baixes frequiéncies (es filtre passa—baixos)

» Ens augmenta el tipus del sistema en 1 (redueix I'error)
» Ens alenteix la resposta (Baixa BW, Pugen Tr,Tp,Ts)
» Ens augmenta el sobrepic de la resposta (MP disminueix)

* Si no es sintonitza bé pot inestabilitzar el sistema

Controlador PD



Gce(s) = Kp + Kds = Kp[1+(Kd/Kp)s]

En el domini temporal:

Gce(t) = Kp*e(t) + Kd*de(t)/dt

Com podem veure té un zero a —Kp/Kd i cap pol

Aventatges | desventatges del controlador Pl
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Resposta a una entrada rampa d'un PD
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» Redueix I'esmorteiment i el sobrepic

» Reduiex temps d'aixecament i establiment, acelera el sistema

* Millora MG, MF i incrementa I'ampla de Banda

 Es pot saturar per altes freqiiéncies (es un filtre passa alts)

» No funciona per sistemes poc esmorteits o inicialment inestables
» No ens corregeix l'error (ens deixa el tipus del sistema tal qual)

Controlador PID

Es com una combinacio d'un Pliun PD

Gce(s) = Kp + Kils + Kds = Kp(1 + (Ki/Kp)/s + (Kd/Kp)s)
Veiem que té:

2 zeros (Poden ser reals o0 bé complexes)
1 pol a l'origen

Es com un entremig entre el Pl i Pd, té els seglients avantatges i incombenients:
« Pot ajustar 3 especificacions al mateix temps: 3 parametres: Kp,Ki,Kd
» Es pot saturar a altes i baixes frequéncies
« Augmenta en 1 el tipus d'un sistema pero no l'alenteix
» Podem triar amb ell la posicié del pol real perque sigui insignificant
» Costa mes de sintonitzar que un Pl o un PD

La seva resposta frequiencial per Kp = 1, Kd = 0.2, Ki = 0.6 és aquesta:
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A baixes freq ens disminueix MP (augmenta SP) i a altes es al reves

Podem fer moltes combinacions amb MP,MG i BW depenenet d'on col.loquem els parametres.
Podem ajustar-los amb regim temporal o amb el diagrama de Bode

DISSENY DE CONTROLADORS

Disseny de controladors fent servir el métode d'assignacio de pols

El controlador que es proposa utilitzar per a aconseguir controlar el nostre procés pot ser un controlador
PID,PI,PD o P

En el cas d'un PID
Gce(s) = Kp + Kils + Kds
L'ajuste d'aquest controlador es fara fent servir el métode d'assignacié de pols simple

El disseny de controladors mitjancant el métode d'assignacié de pols simple consisteix en determinar el
controlador a partir de la condicié de qué el sistema controlat tingui els pols en el lloc desitjat, sigui:

Gc(s) = Ne(s) / De(s)
La funcié de transferéncia del controlador i sigui:
Gp(s) = Np(s) / Dp(s)

La funcié de transferéncia del procés a controlar, llavors la funcié de transferéncia del sistema controlat
suposant que la realimentacié és unitaria valdra:
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T(S) =_Nc(s)*Np(s)

Dc(s)Dp(s) + Nc(s)Np(s)

A partir de les especificacions de disseny determinarem la posicié dels pols del sistema controlat i per tant e
polinomi denominador P(s) de la funcié de transferéncia del sistema en lla¢ tancat T(s). lgualment el polinor
desitjat amb el polinomi a ajustar determinarem els parametres del controlador

Dc(s)DP(s) + Nc(s)Np(s) = P(S) que es el polinomi desitjat

Aquesta equacio s'anomena equacio diofantica.

Exemple amb un controlador PD

G(S) =_1000 M(S) =_1000

s(s+100) s2+10s+1000

Especificacions:

*« SP<5% =0.707
e Tr=0.05sec Tr=0.8+2.5 / n n=51'35.

Pols del nostre sistema: Pols Sistema controlat (especificacions)
s2+10s+1000 s2 + 0.707*51'35s + 51'352 = s2+36.35+2638
Per un PD:

Gce(s) = Kp+Kds GeGp = 1000(Kp+Kds) M(S) = 1000(Kp+Kds)

s(s+100) s2+(10+1000Kd)s+1000Kp

P(S) = s2+36.35+2638 = s2+(10+1000Kd)s+1000Kp
Kd = 26.3/1000 = 0.0263; Kp = 2638/1000 = 2.638
La funcié de transferéncia total ens queda:

M(S) =_2638+26.3s el zero esta a s=-100
$2+36.35+2638

Efecte inestabilitzador del retard

Si tenim en compte que els sistemes normalment tenen un retard present en el model del sistema observar
al simular el sistema controlat que el seu efecte és el desestabilitzar el sistema.
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* » Gp(s) ——m et >

Retard

Si determinem la funcié de transferéncia del sistema realimentat veurem que el retard apareix com un terms
més del denominador. Normalment I'efecte d'aquest terme és desestabilitzar el sistema realimentat.

T(S) =_Gp(s) * e-std _
1+Gp(s)*e-std

Per a poder estudiar I'efecte inestabilitzador del retard del sistema utilitzarem cal utilitzar els diagrames de
Bode, el que fa el retard es canviar—nos el marge de Fase.

Disseny de controladors empiricament: Ziegler—Nichols
Hi ha metodes empirics que ens permeten ajustar controladors: Ziegler—Nichols.
Ajust en llac¢ tancat
El procediment consisteix en:
* Col.locar controlador P amb guany petit i obtenir la resposta a un esglaé
» Augmentar la K fins a obtenir una resposta oscil.latdria mantinguda

* Anotar guany critic (Kpc) i periode d'oscil.lacié Tc

Segons Ziegler—Nichols el parametres del controlador sén:

K Ti Td
PID . o -
Controler 0'6Kpc 0'5*Tc 0'125Tc

PI Controler [0'45Kpc  |Tc/1.2
P Controler |0'5Kpc

On la funcié de transferéncia el controlador PID és:

Gce(s) = K(1+ 1/TiS + Tds)

Ajust en lla¢ obert

El procediment s'utilitza en sistemes ler ordre amb retard, consisteix en:

* Obtenir la resposta en lla¢ obert del sistema amb retard
* Anotar L = temps retard i T = constant de temps

Nomes funciona si T/L >= 4 6 més. Entre 3 i 4 funciona amb reparos
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Segons Ziegler—Nichols el parametres del controlador seran:

Td

0'5L

Ti

2L

L/0'3

1'2T/L

PID

Controler

Pl Controler |0'9T/L
P Controler |T/L

i atrasament de fase

Controladors d'avan

S'utilitzen perqué la seva resposta és fisicament real

1+aTs Presenten un pol a s+P1iun zero a s+Z1

=s+Z71

Gce(s)

s+P1 1+Ts

Avancg de Fase P1>Zl a<1

Retard de Fase P1<Zl1l a>1

La seva resposta frequiencial és: Es sintonitzem utilitzant els diagrames de Bode

CONTROLADOR RETARD FASE
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Disseny dels controladors Avenc—Retard fase

Per sintonitzar—los calen 2 especificacions, Normalment MP (Sobrepic) i error.

1 de Gp(s)

» dibuixar Bode per K

» Mirar MP i comparar—lo amb el desitjat

+"Gc(j) ="Gp( ) - MP
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n = 1/"a *T Freq. tall del sistema
Si coneixem l'angle "Gc(j ) = m obtenim a com:
a = (1+sin m)/ (1-sin m) m l'escollim segons els especificacions
el guany del controlador en alta freq és: GF = 20*log a
Cal ajustar perque la freq. Estigui a —GF/2, llavors utilitzar la formula
n = 1/"a *T Per determinar la T
Perqué sigui efectiu el valor de T ha de ser petit.
Filtres de cancelacio6 de zeros
Normalment al dissenyar controladors PI,PD i PID cal mirar on cauen els 0s
CASOS:
 O's insignificants Estan a D > 10, el controlador funciona
» 0's a 5<D<10 podem despreciar els efectes tot hi que afecten poc
» O's proxims a pols del controlador, cancelen els afectes, cal eliminar—los
» 0's dominants. Cal eliminar-los perqué ens afecten la resposta
« altres casos: Cal avaluar l'efecte dels Os
Per eliminar els 0's hem de dissenyar filtres que permetin eliminar—los

Assignacio de pols completa

Per evitar aquesta addicié d'un zero que fa que la resposta no es correspongui exactament amb la desitjad:
hem de variar lleugerament I'estructura del sistema de control. Simplement restructurant la posicié del
controlador dins del sistema de control com es mostra ala figura la funcié de transferéncia ens queda:

T(S) = Np(s) Np(s) = num. Procés, Dp(s) = den.Procés

Dc(s)Dp(s)+Nc(s)Np(s) Nc(s) = den.controlador Dp(s) = den.contr.

+ » 1/De(s) 1 Gp(s) -

Contr. 1 Procés

Contr. 2

Filtre de Muesca

Una altra forma de treure els O's és fer un controlador és utilitzar un pre—filtre a I'entrada per suavitzar la
senyal i que ens ajudi a cancel.lar els 0's
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—»1/ Ne(s) * " Do) * Gp(s) -
Filtre Contr. 1 Procés

Possibles problemes a tenir en compte

« Linealitzaci6 de processos no lineals, aproximacio de processos complexes
« Errors de precisié, modelitzacié. Estadistica dels parametres

« Variacions de les propietats dinamiques del sistema i que els pols es moguin
» Parametres controlador limitats pels components fisics disponibles

* Perturbacions variables en el sistema

Aix0 fa que la cancelacié de pols/zeros sigui practicament impossible
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