TEMA 1
INTRODUCCION
« Diferentes niveles en la arquitectura de un computador
Un computador digital es una maquina que puede resolver problemas ejecutando ciertas instrucciones.
Un programa es una secuencia de instrucciones que definen una tarea.
Los circuitos electronicos de cada computadora reconocen un conjunto limitado de instrucciones muy simpl
Al conjunto de instrucciones basicas de una computadora se le denomina lenguaje maquina (por ejemplo,
sumar dos nameros). Es el Unico lenguaje que entiende el computador pero es tan elemental que es dificil \
tedioso programar o depurar en él. La solucion es la siguiente:
Sea L1 el lenguaje maquina y L2 un lenguaje de mas alto nivel, facil de utilizar. Entonces el programador
escribe en L2, y luego el programa se traduce a L1, pues L2 no lo entiende la maquina. Esa traduccion pue
ser:

» Compilacién: El compilador traduce la secuencia de instrucciones de L2 a una secuencia en L1. El

resultado se almacena en un programa en L1.
« Interpretacion: El intérprete no genera ningln programa en L1, sino que convierte cada instruccion c
L2 en una secuencia de instrucciones en L1, las cuales ejecuta directamente.

Se puede imaginar asi la existencia de una maquina virtual cuyo lenguaje maguina sea L2 (tenemos un
compilador o intérprete a L1, y nos podemos olvidar de la maquina que trabaja con L1). L2 no debe diferir
mucho de L1 para que la traduccion sea practica, pero para que nosotros entendamos L2 si que debe de h
bastante diferencia. Por tanto, lo que se puede hacer es crear L3, L4, ..., cada uno mas facil de utilizar. A c:
nivel le corresponde una maquina virtual (M1, M2, ..., Mn). Cada programador humano sélo necesita conoc
un lenguaje (por ejemplo, el L3), y puede olvidarse de los niveles inferiores (L1 y L2 en este caso).
» Maquinas multinivel actuales
La mayoria de las maquinas actuales constan de seis niveles, que son:
Nivel 5
Nivel 4
Nivel 3
Nivel 2
Nivel 1
Nivel O

Los niveles son una abstraccion. Quien trabaja en un nivel no tiene que preocuparse de los inferiores.

Cada nivel es soportado por un programa. Por ejemplo, para el nivel cinco, el compilador. En este curso no

dedicaremos al nivel tres.

Los microprogramas son directamente ejecutados por el hardware.

Ahora vamos a ver cada nivel mas detalladamente.

Nivel cero: nivel de l6gica digital.

Es el hardware de la maquina. Habria ain un nivel inferior, el nivel de dispositivo. En este nivel se estudian
las puertas logicas, los circuitos integrados (SSI, MSI, LSI, VLSI), circuitos combinacionales, circuitos
aritméticos, relojes, memorias, microprocesadores, buses, etc.

Nivel uno: nivel de microprogramacion.

Aqui existe un programa llamado microprograma, cuya funcion es interpretar las instrucciones del nivel dos
El microprograma es un intérprete, que pasa cada instruccion de lenguaje maquina a microinstrucciones, la
cudles son ejecutadas.

En algunas maquinas no existe este nivel.

Nivel dos: nivel de maqguina convencional.

Cada fabricante publica el Manual de referencia del lenguaje maquina para cada uno de sus computadores
(dice las instrucciones de lenguaje maquina que éstos tienen).

Las instrucciones del nivel de maquina las interpreta el microprograma. En las maquinas en las que no exis
el nivel de microprogramacion, sin embargo, las instrucciones del nivel de maquina son realizadas
directamente por los circuitos electrénicos (el hardware, el nivel cero).

Nivel tres: nivel de sistema operativo.

La mayoria de las instrucciones de este nivel se encuentran también en el nivel dos, pero, ademas, tienen
nuevo conjunto de instrucciones afiadidas, asi como una organizacién diferente de la memoria, posibilidad

ejecutar dos 0 mas programas, etc.

Las nuevas instrucciones las interpreta el sistema operativo, mientras que las que son idénticas a las del ni
dos las lleva a cabo el microprograma.

Nivel cuatro: nivel del lenguaje ensamblador.
Los niveles cuatro y superiores son utilizados por los programadores de aplicaciones, los niveles inferiores
estan pensados para programar aplicaciones directamente en ellos, sino que estan disefiados para ejecuta

intérpretes y traductores de los niveles superiores y son escritos por los programadores de sistemas.

El ensamblador es un lenguaje de nivel tres, que lleva a cabo la traduccién de un programa de nivel cuatro
nivel tres.

Nivel cinco: nivel de lenguajes de alto nivel.

Los lenguajes de alto nivel son mas faciles de usar que los niveles inferiores. Son utilizados por los
programadores de aplicaciones.

Los traductores de programas en lenguaje de alto nivel pueden ser compiladores o intérpretes.
 Evolucién histérica de las maquinas multiniveles
La arquitectura de los computadores ha ido evolucionando a lo largo de la historia, la cual se divide en
distintas etapas llamadas generaciones. Vamos a ver dichas generaciones (las fechas difieren de una
bibliografia a otra):
Generacion cero (1642-1945).

 Tecnologia:

Computadores mecanicos o electromecanicos con muchas limitaciones (a partir de engranajes, manivelas,
etc.).

* Personas destacadas:

Blaise Pascal construy6 en 1642 una maguina calculadora para sumar y restar, con el fin de ayudar a su ps¢
(que era recaudador de impuestos).

Charles Babbage construy6 en 1834 una maquina de propdsito general que constaba de tres partes: almac
(memoria), taller (CPU) y seccion de entrada y salida (unidad de E/S). Contratdé a una mujer llamada Ada p:s
programar la maquina, convirtiéndose asi en la primera programadora de la historia. Mas tarde se daria el
nombre de Ada a un lenguaje de programacion.
Aiken construy6 la MARK | en 1944, inspirado en los estudios de Babbage.
Primera generacion (1945-1955).

» Tecnologia:

Valvula electrénica de vacio. Las valvulas eran voluminosas, caras y poco fiables, lo que conllevaba
computadores grandes e incémodos.

* Modelos:
ENIAC (1946): 18000 valvulas, 30 toneladas, 1400 m2, 100 Kw, 5000 sumas por segundo.
EDSAC (1949): Primer ordenador con programas almacenados.
UNIVAC: Primer ordenador en ser comercializado.

» Personas destacadas:
John Von Neumann establece un modelo de la estructura de un ordenador (memoria, unidad aritmético 16gi
unidad de control y unidad de entrada y salida) que es la que sigue aln vigente. Realza la idea de computa
con programa almacenado.

* Modo de funcionamiento:

Se programa en lenguaje maquina, propio de cada maquina y muy complicado (se desconocen los lenguaje
de programacion), no existe sistema operativo, se realiza el programa cableado, se solicita hora para la

maquina, y se inserta el panel de conexiones (donde tenemos el programa cableado) en el computador par
ejecutar el programa. A principios de los cincuenta se mejora el procedimiento con las tarjetas perforadas.

Segunda generacion (1955-1965).

» Tecnologia:

Transistor (inventado por Bardeen y Brattain en 1947). Los transistores sustituyen a las valvulas de vacio y
gque presentan las siguientes ventaja: menor espacio, menor consumo, menor precio y mayor fiabilidad. Est
hace disminuir el precio y tamafio de las computadoras.

* Modelos:
PDP-1 de DIGITAL.

* Modo de funcionamiento:
Aparecen los lenguajes de alto nivel: FORTRAN, COBOL, ALGOL, PL/1.
Se escribe el programa en papel, luego se perfora en tarjetas, se lleva al operador y finalmente se recoge €
listado de impresora. Sdlo las grandes empresas y universidades podian tener un computador, pues aun er
muy caros. Ademas, hacia falta gente especializada tanto parar perforar las tarjetas como para utilizar la
maquina. Habia también que hacer comprobaciones por si la perforacion de la tarjeta no era correcta. En
definitiva, el proceso completo hasta que se obtenia el listado de impresora podia durar varios dias.
Aparece el sistema de procesamiento por lotes (con el sistema operativo). Se trata de un método para redu
el nimero de veces que habia que ir a buscar el compilador (por ejemplo, el de FORTRAN). Vemos coémo
funciona con un caso particular.
El 7094 es un computador méas potente que el 1401 pero mas caro, por lo que, para no quitarle tiempo, se |
los dos 1401 menores. Con uno de ellos se pasa de las tarjetas perforadas a cintas. Las cintas se llevan al
gue asi funciona mas rapido que con las tarjetas, la salida se almacena en otra cinta, y con el otro 1401 se
por impresora.

Es en el 7094 donde se carga el compilador (por ejemplo, el de FORTRAN):

Con $JOB comienza el trabajo. $SFORTRAN es una tarjeta de control que le indica al sistema operativo que
cargue el compilador de FORTRAN. Vemos, por tanto, que se trata de un sistema operativo muy simple.

Tercera generacion (1965-1980).
 Tecnologia:

Circuitos integrados SSI (hasta 100 elementos integrados) y MSI (100-3000).
* Modelos:

IBM sistema 360 y PDP-8 (DIGITAL).
* Modo de funcionamiento:

Aparecen mas lenguajes de alto nivel: BASIC y PASCAL.

También aparece un sistema operativo con multiprogramacion, para no desaprovechar los tiempos de E/S.
Para ello se produce una divisién de la memaria, con el objetivo de tener varios programas. Hay que dispor
asimismo de un sistema de proteccién de la memoria para que el usuario tenga sus programas seguros.
Existen procedimientos de spooling, que consiste en la operacion simultanea de periféricos conectados en
linea. Es decir, se usan los dispositivos E/S al mismo tiempo que trabaja el computador. Por ejemplo, se
cargan las tarjetas al mismo tiempo que se trabaja en otra cosa.

Lo que realmente lo diferencia del sistema operativo por lotes es el tiempo compartido: El computador no
dedica todo el tiempo a un solo trabajo.

Cuarta generacion (1980-1990).
» Tecnologia:

Se integra la UCP en un solo chip: el microprocesador.

Los circuitos integrados son LSI (3000-30000) y VLSI (mas de 30000).
* Modelos:

IBM PC (1981), IBM PC XT (1982), IBM PC AT (1984), IBM PS/2 (1987), VAX (DIGITAL, 1980), CRAY
X-MP (1983).

* Modo de funcionamiento:
El software es facil de usar. Aparecen los sistemas operativos MS-DOS y UNIX. Aparecen los sistemas
operativos de red y los sistemas operativos distribuidos. En los primeros, el usuario que se conecta a la red
consciente de la existencia de muchos ordenadores de manera que debe saber como conectarse al ordena
que quiera. En los sistemas operativos distribuidos, en cambio, el usuario no sabe en que ordenador se eje
su programa o donde estan los datos, se trata de algo transparente al usuario.
Quinta generacion (1990-¢7?).

» Tecnologia:

Circuitos con mas de un millon de componentes. Aparecen nuevas arquitecturas (paralelismo: los programs
se ejecutan en paralelo). Surge la tecnologia éptica: fibra 6ptica, CD—ROM, etc...

* Modelos:
CONNECTION MACHINE: Maqguina masivamente paralela.
« Modo de funcionamiento:

Inteligencia artificial y sistemas expertos (se tienen grandes bases de datos para simular la inteligencia
artificial).

» Evolucién de los niveles

Los primeros computadores digitales (afios 90) s6lo tenian dos niveles (convencional y l6gico digital). Los
circuitos digitales eran voluminosos, poco fiables, y dificiles de construir.

El nivel de programacion se afadi6 para:

» Simplificar la electrénica: Por ejemplo, un microprograma puede dividir una multiplicaciéon en sumas
las cuales son ejecutadas directamente.

« Eacilitar las escritura de compiladores: Que ya no tienen que hacer una traduccion tan fina.

 Ejecutar los programas mas rapidamente: El microprograma estd en ROM, que es mas rapida que |
RAM.

En los setenta el nivel de microprogramacion estaba ya plenamente difundido.
En los cincuenta aparecieron los ensambladores y compiladores, en los sesenta el sistema operativo

En los afios ochenta (a principios) se elimina el nivel de microprogramacién para dar paso a las maquinas
RISC, por los siguientes motivos:

Cuanto mas complicado se hace el lenguaje maquina, mas grande, complicado y lento se vuelve el
microprograma (ya que tiene que llamar a procedimientos).

La velocidad de la memoria RAM se aumentd con la tecnologia (memorias de semiconductores).

Es dificil escribir, depurar y mantener el microcddigo. Asi, por ejemplo, si hubiera un fallo en el
microprograma, por estar en ROM habria que cambiar la ROM de cada ordenador con ese microprograma.

En cambio, en las maquinas RISC el nimero de instrucciones es muy reducido, por lo que no hace falta
microprogramacion.

TEMA 2

ORGANIZACION DE COMPUTADORES

* Introduccion

Un computador consta de procesador (también llamado CPU), memoria y dispositivos de E/S.
Esquematicamente lo podemos representar como:

» Procesadores

La CPU es el cerebro del computador. Su funcion es ejecutar programas almacenados en la memoria
principal. La CPU se compone de:

» Unidad de control (UC): Se encarga de leer una tras otra las instrucciones del programa que esta er
memoaria principal, asi como de generar las sefiales necesarias para su ejecucion. Estas sefales es
sincronizadas con un reloj.

» Unidad aritmético ldgica (UAL): Es la encargada de realizar las operaciones elementales sobre los
datos de la memoria (sumas, restas, etc.).

« Regqistros: Pequefia memoria de alta velocidad para almacenar resultados intermedios y cierta
informacién de control. Por ejemplo: el PC (contador de programa).

Ejecucién de una instruccion.

El proceso que se sigue es:

» La CPU extrae de la memoria la siguiente instruccion y la lleva al IR (registro de instruccion.
* Se incrementa el PC.

» Se determina el tipo de la instruccion.

» Se consulta si la instruccion necesita datos de la memoria.

« Se extraen los datos y se cargan en los registros.

» Se ejecuta la instruccion.

« Se almacenan los datos en el lugar apropiado.

Ejecucion de instrucciones en paralelo.

Cada vez se intenta que las maquinas sean mas rapidas, pero existen limites econémicos y fisicos. Por esc
recurre a una maguina con varias ALU's o incluso varias CPU's.

Las maguinas paralelas se dividen en tres categorias (establecidas por Flynn en 1972) segln el nimero de
instrucciones y datos:

« SISD: Flujo de instrucciones simples, flujo de datos simple.
» SIMD: Flujo de instrucciones simples, flujo de datos mdltiple.
» MIMD: Flujo de instrucciones mdltiple, flujo de datos mdltiple.

Maquinas SISD.

Constan de un programa y un conjunto de datos. Se extrae una instruccion y se ejecuta, se extrae otra y as
paralelismo se logra extrayendo e iniciando la siguiente instruccién antes de terminar la que esta en curso.

Existen 2 modelos posibles:

* Varias unidades funcionales.
La UC extrae una instruccion y la manda a una unidad funcional, extrae la siguiente, y asi hasta que no se
pueda avanzar. No se podra avanzar en los dos casos siguientes: si todas las unidades funcionales estan

ocupadas o si hace falta un operando que se esta calculando en otra instruccion.

Se supone que el tiempo en ejecutar una instruccién es mayor que el de extraerla. Si no fuera asi, s6lo se
usaria una unidad funcional de forma simultanea.

El esquema de funcionamiento es:
» Procesamiento en linea.

Consiste en separar la ejecucion de cada instrucciéon en partes. Cada parte la ejecuta una unidad de
procesamiento de la CPU. Por ejemplo:

En este ejemplo la CPU tiene cinco unidades de procesamiento. Cada instruccién debe pasar por todas ellc
Asi, la instruccion uno tarda cinco unidades de tiempo en ejecutarse, pero las demas es como si sélo tardal
una unidad de tiempo a todos los efectos.

UP1 1 2 3 4 5 6 7 8

Maquinas SIMD.
En ella tendremos un programa con mdltiples conjuntos de datos.

También existen dos modelos:

» Maquina vectorial.

Para cada entrada de la ALU se tiene un vector con "'n' entradas y una sola variable. O sea, la ALU es una
unidad vectorial capaz de realizar operaciones con vectores. Esquematicamente:

» Procesador de arreglos.

Consiste en una malla cuadrangular de elementos procesador/memoria. Estos reciben las instrucciones de
UC, las cuales son ejecutados por todos los procesadores. El esquema es:

Con esta estructura se pueden hacer operaciones con matrices. Simplemente con dar una instruccion, cad:
procesador realizaria dicha operacién con el elemento de la matriz correspondiente.

Maquinas MIMD.

En estas maquinas distintas CPU's manejan distintos programas compartiendo a veces una memoria comu
esquema habitual del sistema multiprocesador es el siguiente:

Todas las CPU's acceden a la memoria compartida a través del bus, por lo que pueden surgir dificultades s
gran namero de procesadores quieren acceder a la memoria al mismo tiempo. Posibles soluciones para es
problema pueden ser:

» Tener memorias locales para cada procesador, en las cuales se almacenan los datos y programas r
comunes, mientras que soélo los comunes estaran en la memoria compartida.

» Tener mas de un bus.

» Usar memoria caché, que es una técnica para mantener en cada procesador las palabras de memo
usadas con mayor frecuencia.

* Memoria
Sirve para almacenar programas y datos. Su unidad basica es el bit.

Se divide en celdas, cada una de las cuales se identifica por una direcciéon. La unidad mas pequefa
direccionable es el byte (8 bits) (por ejemplo, una maquina de 16 bits tendré instrucciones para operar sobr

palabras de 2 bytes). Los bytes se agrupan en palabras, la mayor parte de las instrucciones operan sobre
palabras.

Los bytes en una palabra se pueden numerar de izquierda a derecha (lo que se llama big endian, usado po
Motorola) o de derecha a izquierda (lo que se llama little endian usado por Intel). Esto provoca un problema
la falta de una norma en el ordenamiento puede ocasionar cierta incompatibilidad en la transferencia de dat
Dicho problema no se soluciona con el simple intercambio de los bytes, ya que s6lo habria que hacer el

cambio para los bytes que guardan cifras numéricas, no para las cadenas de caracteres. Posibles solucion:
son:

« Incluir un encabezado que indique el tipo y el tamafo de los bytes.
» Que ambas maquinas, antes de la transferencia, se pongan de acuerdo en qué formato usan.

Memoria secundaria.

Se usan para memoria secundaria los siguientes dispositivos: Cintas magnéticas, discos magnéticos, disco
flexibles, discos opticos, discos RAM. En ellos se utiliza como disco una parte de la memoria principal
previamente reservada. Sus ventajas son: acceso instantaneo, facilidad para un ordenador sin disco, etc.

« Dispositivos de E/S

Sirven para la comunicacién con el exterior. Aqui se incluyen dispositivos tales como terminales, médems,
ratones, impresoras. Existen dos enfoques distintos para tratar la E/S:

Enfoque uno.

Para grandes computadores. En él existen unos procesadores de E/S (también llamados canales), a los cu
se conectan los periféricos; un procesador de E/S es un pequefo procesador que se encarga de la
comunicacion con el exterior.

La CPU carga en los procesadores de E/S, a través del bus de E/S, el programa donde se indica lo que ha
hacer, con lo cual ella se libera de trabajo. Cuando el procesador de E/S acaba, mando una interrupcion po
bus de E/S.

Esquematicamente:
Enfoque dos.

Es el utilizado en computadores personales. En él, se afiaden a la tarjeta matriz los controladores necesari
(de video, de teclado, de disco, etc.). Estos controladores manejan la E/S al dispositivo y el acceso al bus,
funcionan con interrupciones o mediante DMA (acceso directo a memoria). Es el arbitrador el que decide
guién accede al bus.

El esquema es:

TEMA 3

CONCEPTOS FUNDAMENTALES

DEL NIVEL DEL SISTEMA OPERATIVO

« Definicién y objetivos del sistema operativo

El sistema operativo es un conjunto de programas que se encargan de algo. Funciones:

 Ocultar toda la complejidad del hardware al programador: Para ello el sistema operativo presenta ur
serie de funciones mas faciles de usar que el propio hardware; o sea, el sistema operativo es como

magquina virtual que hace de capa que envuelve el hardware. Los programas de aplicacion no tratan
directamente el hardware, sino que lo hacen a través del sistema operativo Por ejemplo, un progran
de aplicacion puede ser leer un bloque de ficheros. Es el sistema operativo quien maneja el disco o
disquete (el programa no se preocupa de ello) y transfiere los datos. El programa sélo da la orden d
leer.

» Administrar los recursos de la maqguina: El sistema operativo asigna estos recursos (CPU, memoria,
dispositivos de E/S) entre los distintos programas de aplicacién que se ejecutan. Ademas, el sistem:
operativo contabiliza los recursos usados por los usuarios, y decide quien utiliza cada recurso en ca

de conflicto.
 Estructura, componentes y servicios del sistema operativo
 Llamadas al sistema

El sistema operativo se divide en varios médulos cada uno con una funcién determinada. Tendremos una
interfaz muy bien determinada para usar estas funciones, los programas acceden a estas funciones mediar
una llamada al sistema. Cada sistema operativo tiene llamadas al sistema distintas.

A cada llamada al sistema le corresponde un procedimiento que puede ser llamado por el programa de
usuario. El procedimiento no es sélo la llamada al sistema, incluye mas cosas. El procedimiento debe
comenzar con una llamada al sistema. Por ejemplo:

count=read(file, buffer, nbytes);

Esto lee de file, lo mete en buffer, y lee nbytes, que es lo que le pedimos. Lo que ha podido leer (nimero de
bytes) lo mete en count. Este ejemplo es de UNIX, es como en C ya que UNIX esta escrito en C. La funcior
de biblioteca “read' es el procedimiento que incluye "READ', lo que es propiamente la llamada al sistema.
Pero antes de "READ' el procedimiento debe incluir un TRAP, para avisar que va a llamar al sistema. Sin
embargo, desde el programa usuario lo que se ve es la llamada al procedimiento ‘read'.

* Procesos

Un proceso es un programa en ejecucion. Consta de un cédigo ejecutable, datos, pila del programa, contac
de programa, puntero a la pila y otros registros e informacién necesaria para ejecutar el programa.

Por ejemplo, en un sistema donde hay tiempo compartido, cada cierto tiempo el sistema operativo decide
parar un proceso y arrancar otro nuevo. Cuando se rearranca el primer proceso, debe hacerlo en el mismo
punto en que se pard. Asi, si estaba leyendo un fichero en una posicién, habra que seguir en la posicion
siguiente. Por lo tanto, el sistema operativo debe guardar la informacion necesaria para conseguirlo. Para €
los sistemas operativos tienen una tabla de procesos, en la que hay un registro por cada proceso, y que
contiene la informacion precisa.

Un proceso (en ejecucidn o parado) consta de: su imagen en memoria en el espacio de direcciones que oci
dentro de la memoria y una entrada en la tabla de procesos.

Un proceso a su vez puede crear nuevos procesos, llamados procesos hijos del primero (se puede crear as
estructura jerarquica de procesos).

Cuando un proceso recibe una sefial del sistema operativo se detiene para iniciar un procedimiento de
tratamiento de la sefial (tras salvar por donde iba). Las sefiales son las equivalentes software de las
interrupciones en hardware. Por ejemplo, un proceso le puede decir al sistema operativo que le mande una
sefal si un mensaje que es mandado a otra maquina no recibe contestacion pasado cierto tiempo, con el ol
de reenviar el mensaje.

El sistema operativo asigna a cada usuario lo que se llama un "uid' (identificador de usuario). Cuando un
proceso arranca, lo hace con la identificacion "uid' del usuario.

* Ficheros

Sirven para almacenar informacién. Se agrupan en directorios. El sistema de ficheros sera asi una estructu

10

jerarquica compuesta de ficheros y directorios. Cada fichero o directorio se puede nombrar con una ruta de
acceso o “path'. La ruta absoluta es la que parte del directorio raiz, indicando también todos los directorios
intermedios. Pero se puede dar una ruta relativa partiendo del directorio actual (directorio de trabajo).

Los ficheros deben tener un sistema de proteccidn para que en un sistema multiusuario no todos los usuari
puedan acceder a cierta informacion restringida. Por ejemplo, en UNIX hay nueve bits para indicar los
permisos, tres para el usuario, tres para el grupo y los bits restantes para los demas usuarios. Cada grupo ¢
tres indica respectivamente “rwx' (lectura, escritura y ejecucién). Podemos activar los bits que queramos. E
sistema operativo comprueba primero, antes de hacer algo, si lo que queremos hacer nos esta permitido.

En muchos sistemas operativos se proporcionan mecanismos para facilitar la E/S al usuario. Esto se hace
mediante una abstraccién en la que se crean ficheros especiales que representan dispositivos E/S. Por ejel
para leer o escribir en una impresora podemos usar su fichero especial. Hay dos tipos de ficheros especiale

« De blogues: Para dispositivos formados por bloques y de acceso aleatorio. Ejemplo: discos.
» De caracteres: Para dispositivos que se comportan como cadenas de caracteres. Ejemplo: terminale
impresoras, redes,...

Cuando se arranca un proceso ya hay tres descriptores de ficheros que se pueden usar.

« Descriptor de fichero 0: entrada estandar (normalmente el teclado).
 Descriptor de fichero 1: salida estandar (normalmente la pantalla).
 Descriptor de fichero 2: salida estandar de errores (normalmente la pantalla).

Una caracteristica adicional relacionada con ficheros y procesos son los tubos o “pipes', que sirven para
interconectar dos procesos.

* Intérprete de comandos

Cuando se hace una llamada al sistema operativo se entra en su nucleo, pero hay mas programas que no
forman realmente parte del sistema operativo, como linkadores, compiladores, etc. El intérprete de comand
tampoco pertenece al sistema operativo pero todos los sistemas operativos estan asociados a uno.

Cuando un usuario inicia una sesion, arranca el intérprete de comandos (shell), que presenta el simbolo ™>'
Cuando le damos una orden, se crea un proceso hijo, y al acabar se vuelve al proceso del intérprete de
comandos.

El sistema operativo no debe entenderse s6lo como el cédigo que da servicio a las llamadas al sistema que
podriamos denominar ndcleo. Existen también otras utilidades auxiliares que también forman parte de él. E
intérprete es uno de estos programas que no estan incluidos en el nlcleo. Se trata de una interfaz entre el
sistema operativo y el usuario. Cada vez que un usuario entra en una maquina se arranca un “shell', que er
un simbolo para indicarle que espera una orden. Si el usuario escribe un comando, el “shell' crea un proces
hijo que ejecuta ese comando y el “shell' espera un comando. Si el usuario escribe uno de ellos, el “shell' cr
un proceso hijo que ejecuta ese comando y el “shell' espera a que termine el proceso hijo y vuelve a estar ¢
espera a un nuevo comando.

Se puede hacer que el intérprete redirija la entrada y la salida. Ejemplo:
date > fichero

La salida de date se almacena en fichero.

11

sort < fl > f2
sort toma como entrada f1 y la salida la envia a 2.

También el shell puede crear un “pipe' entre dos procesos, enviando la salida del primero a la entrada del
segundo. Por ejempilo:

sort f1 f2 f3 | sort > /dev/Ip
De esta forma sort ordena f1, f2, f3 y lo manda al fichero especial Ip, que en UNIX es la impresora.

Se le puede indicar al “shell' que no espere a que acabe el proceso o procesos hijos que haya creado. Pare
se pone & al final de la orden. Esto se llama ejecucién en “background'.

« Componentes y servicios del sistema operativo
Hay varios componentes en un sistema operativo:

« Administrador de procesos: Se encarga de crear y eliminar procesos, suspenderlos y reanudarlos,
proporcionar mecanismos para la comunicacion y sincronizacién de procesos, y para el manejo de
bloqueos de procesos.

» Administrador de memoria: Se encarga de controlar las zonas de memoria que estan siendo utilizad
y quién las usa, decidir que proceso se va a cargar en memoria en el caso de que haya espacio,
gestionar y recuperar el espacio de memoria.

» Administrador del sistema de E/S: Su funcién es la de presentar una interfaz general con los
manejadores de dispositivos (que son la parte del sistema operativo que controla los periféricos de |
maquina), es decir, una interfaz igual para todos esos manejadores y, ademas, ha de tener manejac
para dispositivos especificos (los manejadores pueden ser diferentes, pero la interfaz debe ser la
misma).

« Administrador de archivos: Se encarga de gestionar el espacio en disco, gestionar ficheros (crear,
borrar, leer, escribir...), directorios, copias de seguridad y establecer una correspondencia entre
archivos y almacenamiento secundario (debe saber en que lugar del almacenamiento secundario es
cada archivo).

« Sistema de proteccién: Sirve para controlar el acceso a los recursos (viendo si el usuario tiene o no
permiso).

« Sistema de comunicacion: Gestiona los accesos a la red (se encarga de la conexion de los
procesadores del sistema para compartir los recursos de la red).

Los servicios de un sistema operativo son las tareas realizadas por todos los componentes del sistema
operativo

Distintas estructuras en sistemas operativos.
» Sistemas monoliticos.

No hay una estructura definida. Son sistemas simples. El sistema operativo se compone de una serie de
procedimientos que se encuentran al mismo nivel cada uno de los cuales puede llamar a cualquier otro.

En cierto momento el programa de usuario hace una llamada al ntcleo del sistema operativo, cuando se ve
hacer la llamada se ejecuta la instruccion "TRAP', que cambia la maquina de modo usuario a modo

privilegiado, transfiriendo el control al sistema operativo (en este modo privilegiado se pueden ejecutar todc
tipo de instrucciones, en modo usuario algunas instrucciones no se pueden realizar, como por ejemplo las ¢

12

E/S).

En ese instante el sistema operativo examina la llamada al sistema y mira cual es el procedimiento de servi
requerido, se busca en la tabla ese procedimiento de servicio, y tras ejecutarlo se devuelve el control al
programa de usuario.

Asi pues, en este esquema tenemos un procedimiento principal, que llama a los procedimientos de servicio
solicitados por el servicio, éstos, a su vez, pueden llamar a procedimientos auxiliares para ejecutar diversas
operaciones. Por tanto, un sistema operativo monolitico se estructura en tres niveles: procedimiento princip
de servicio y auxiliares.

El MS/DOS es de este estilo, pero no tiene proteccién de hardware (no tiene modo privilegiado, por lo que ¢
usuario puede hacer lo que quiera).

» Sistemas nivelados.

Existen varios niveles jerarquizados. Por ejemplo, el sistema operativo IHE (1968) tiene 6 niveles: El
operador (5), programas de usuario (4), gestiéon de E/S (3), comunicacion entre operador y procesos (2),
gestion de memoria principal y secundaria (1) y asignacion del procesador y multiprogramacioén (0).

Los niveles no se tienen que preocupar de los niveles inferiores. Por ejemplo, el nivel cuatro no se tiene qut
preocupar de la E/S, de la comunicacién con la consola del operador, etc... El nivel cinco es parecido al
intérprete de comandos. Con este sistema operativo no existe proteccion de un nivel a otro.

Otro ejemplo es el sistema MULTICS en el que existe una especie de proteccion de niveles: el acceso a un
nivel inferior desde uno superior se realiza a través de una interrupcion software tipo "TRAP'.

» Maqguinas virtuales.

Un sistema operativo (0 un sistema en tiempo compartido) debia ofrecer dos tipos de servicios, gestionar la
multiprogramacién y presentar una maquina virtual mas facil de utilizar por el usuario. Un sistema operativo
en maguina virtual separa los dos tipos de servicios mencionados. Esto se aplicé, por ejemplo, en la maqui
370 de IBM: el monitor de la maquina virtual es el VM/370 y se ejecuta sobre el hardware de la 370, el
VM/370 es como si dividiera la maquina en varias, cada una con sus propios recursos. Cada una de ellas e
sistema monoprogramable (un solo programa). Es el VM (Virtual Machine) quien gestiona la
multiprogramacion.

Cuando un usuario quiere hacer algo lo recibe el CMS (Conversational Monitor System), y luego el VM es ¢
gue lo gestiona todo. EI CMS actlia sobre el VM, no sobre el hardware.

Este ha sido el esquema general de las maquinas virtuales. El VM intenta que las maquinas virtuales sean
iguales a la maquina real. O sea, intenta que parezca que cada usuario tenga sus propios recursos (disco, |
aunque sea el mismo para todos. Cada usuario puede tener su propio sistema operativo. Este esquema no
mucho éxito ya que es dificil de implementar.

* Modelo cliente—servidor.

Es un modelo estandar para las comunicaciones de red. Ahora, la maquina tendra un ndcleo que se encarg
gestionar el hardware y comunicar los procesos clientes y servidores.

Esto tiene la ventaja de que es muy simple adaptar este esquema a un sistema distribuido. El cliente no tiel
por que saber si el servidor esta en su misma maquina o no. En este modelo un servidor no es mas que un

13

proceso que espera a recibir una peticion del proceso cliente. El caso tipico de funcionamiento es:

« Se comienza el proceso servidor.

« El servidor espera a un proceso cliente mientras duerme.

« Se comienza un proceso cliente, en el mismo sistema del proceso servidor 0 en otro.

« El cliente manda su peticion al servidor (ejemplo: pedir la hora, leer o escribir en un fichero sito en la
maquina del servidor, ejecutar un comando en la maquina del servidor, imprimir algo, escribir algo en la

pantalla del servidor, etc.).
« El servidor despierta, hace lo que se le ha pedido, y luego vuelve a la cama. Normalmente es el sistema

operativo el que despierta al servidor.
Hay dos tipos de servidores:
* lterativos:

Esto ocurre si la peticion del cliente se puede ejecutar en un tiempo corto y conocido. El propio proceso
servidor gestiona la peticion del cliente; cuando termina, gestiona la peticién de otro cliente, etc. Ejemplo: Ic
servidores de la hora.

* Concurrentes:

Esto ocurre si la peticidn requiere un tiempo para resolverla que depende de la peticion en si, y no se sabe
cuanto tiempo se puede tardar (ejemplo: leer o escribir ficheros depende de la longitud del fichero). En este
caso, los servidores, al llegar la peticion, crean un nuevo proceso que es el que realmente gestiona la petic
del cliente, mientras gque el servidor espera una nueva peticién. Si llega otra, vuelve a crear otro proceso, y
sucesivamente (por eso son concurrentes, pues no hace falta esperar a que acabe el primer proceso cread

En un momento dado puede haber varios procesos ejecutandose concurrentemente en la misma maquina
dando servicio a distintos clientes. Esto no ocurre en los procesos iterativos. Se utilizan para leer o escribir
ficheros.

TEMA 4

PROCESOS CONCURRENTES

 Planteamiento del problema de sincronizacién y planificacion

Un proceso es un programa en ejecucion. En un sistema en tiempo compartido cada proceso es ejecutado
cuantos milisegundos, luego se pasa a otro, y asi sucesivamente. A esto se le llama pseudoparalelismo. El

mismo procesador cambia de un programa a otro. El sistema operativo es el que simula el paralelismo. Al
cambio entre un proceso y otro se le llama multiprogramacion.

La ejecucioén de un programa no es reproducible en sucesivas ejecuciones del mismo (en una situacion se
ejecutaran cuatro instrucciones de golpe, en otras seis...).

Los procesos no se van a ejecutar a una velocidad uniforme. La velocidad de ejecucién dependera de lo
cargado que esté el sistema. Por tanto, no podemos hacer suposiciones de tiempo en nuestros programas.
podemos decir: cuando pase tal tiempo leer de cinta, por ejemplo.

En todos los sistemas operativos habra mecanismos para la creacion de procesos. Por ejemplo, en UNIX, |

llamada al sistema FORK crea otro proceso: hace una copia exacta del proceso que llama a FORK, de mar
gue ambos procesos, padre e hijo, se ejecutaran en dos a partir de ese momento. Para distinguir si estamo

14

el proceso padre o en el hijo se mira lo que devuelve FORK:
if (fork()==0) /* es el hijo */

{

}

else /* es el padre */

{

}

De esta forma podemos hacer cosas diferentes para los procesos padre e hijo.

En MS/DOS hay una llamada equivalente a FORK que carga un fichero binario en memoria, pero como est
sistema operativo no es multiprogramado, realmente primero se ejecuta el hijo, y luego el padre. No hay
multiprogramacién pues hay una llamada al sistema que carga desde el proceso padre un fichero binario er
memoria que pasa a ejecutarse mientras el proceso padre permanece suspendido.

Aunque los procesos son independientes, a veces necesitaremos gue interactlien entre ellos. Por ejemplo:
cat f1 f2 13 | grep palabra

De esta forma grep busca palabra en f1, f2, f3. Dependiendo de la velocidad relativa de grep y cat puede qt
grep deba esperar a que cat mande algo; entonces grep debe bloquearse de alguna forma mientras espera

En general un proceso puede bloquearse si no tiene la entrada disponible. Pero también el sistema operati
puede decidir bloquear un proceso para ejecutar otro.

Los estados de los procesos son tres:

» En ejecucioén: Si esta usando el procesador.

 Blogueado: Si no esta usando el procesador.

« Listo: Se puede ejecutar (no esta bloqueado) pero no le toca ejecutarse pues hay otro proceso
ejecutandose en ese momento.

Los posibles paso de uno a otro son:

« Transicién 1: Si requiere una E/S que no estd lista; si lo decide el sistema operativo; o a veces el
propio proceso mediante la instrucciéon BLOCK.

» Transicién 2 vy 3: Es el planificador el que decide qué proceso se ejecuta en cada momento.

« Transicién 4: Si el proceso esperaba algo y ya ha llegado (no puede pasar de bloqueado a en ejecu
directamente).

Cuando hay una transicién de tipo 1, el planificador decide que proceso del grupo listo es el que va a
ejecutarse. También es el planificador el que decide cuando hacer las transiciones 2 y 3. Asimismo, decide

15

gué proceso se ejecuta si el que estaba ejecutandose acaba. También decide, si hay una transicion 4, si es
proceso debe pasar a ejecutarse o esperar en listo. O sea, el planificador decide en cuatro casos diferentes

En la tabla de procesos se dice en que estado esta cada proceso. Ademas, en esta tabla tendremos la
informacién necesaria para que un proceso listo pase a ejecutarse (a esto se le llama cambio de contexto).

Funcionamiento del planificador.

En memoria habra unos vectores de interrupcion que contienen las direcciones del procedimiento de servic
de la interrupcion correspondiente. Los pasos que se siguen son:

» Supongamos que estamos ejecutando un proceso y que llega una interrupcion debido a otro proces
gue la solicita (por ejemplo, del disco). El hardware es quién guarda el PC y los datos necesarios, y
también quien carga el nuevo PC que le indica el vector de interrupciones.

* Ahora pasa a ejecutarse el procedimiento de servicio, que es el que copia en la tabla de servicio lo
necesario para que este proceso, que pasa a listo, pueda volver a ejecutarse en el futuro.

» Una vez que llega la interrupcion del disco que indica que se ha acabado la E/S este proceso, que
estaba bloqueado, pasa a listo (se pone el estado del proceso que esperaba E/S de disco de bloque
a listo).

» Ahora es el planificador quien decide qué proceso se va a seguir ejecutando, pues ahora hay dos
procesos listos.

 Es el despachador quien realmente realiza el cambio de contexto para ejecutar el proceso decidido
el planificador.

» Comunicacion entre procesos

Los procesos se comunican a menudo entre si (por ejemplo, si un proceso quiere imprimir debe comunicar:
con el proceso de impresora para decirle el nombre del fichero que quiere imprimir, otro ejemplo, si un
proceso quiere leer de un fichero debe decirle al proceso del disco que fichero es).

Normalmente lo que ocurre es que los procesos que deben comunicarse comparten un area de memoria. F
ejemplo, cuando un proceso quiere imprimir escribe en un directorio especial, llamado directorio de spooler
el nombre del fichero a imprimir. Mas tarde, el proceso de impresora, si lo hay, lo imprime y borra el nombre
del fichero del directorio. Asi pues, el directorio spooler sera una tabla con los ficheros a imprimir.

Suponiendo que hay dos procesos (PA y PB) que quieren imprimir. Habra dos variables:

« sal: Posicién del primer fichero que hay que imprimir (en el dibujo sal=4).
« ent: Primera posicion libre (en el dibujo ent =7).

Los pasos son:

» Vamos a suponer que PA esta ejecutandose, y quiere imprimir algo. Entonces lee la variable ent.

» En ese instante imaginemos que llega una interrupcién de reloj y el planificador quiere que sea PB
quien deba ejecutarse.

» PB, da la casualidad, que también quiere imprimir, por lo que lee ent, y escribe FB en la casilla 7 de
directorio spooler. Luego, incrementa ent en una unidad.

» Cuando pasara a ejecutarse PA, éste pondria FA en la posicién 7, que ya habia leido antes,
machacando FB. El demonio impresor no se daria cuenta, y FB se perderia.

Esto puede pasar si hay variables compartidas por varios programas, y se llaman condiciones de carrera. S
estas situaciones en que dos 0 mas procesos comparten una zona comun (bien de memoria o de disco) y ¢

16

resultado final depende de los momentos en que se hace la ejecucion. Habra que buscar alguna forma de
solucionarlo.

Para evitar las condiciones de carrera lo que se hace es impedir que mas de un proceso acceda
simultdneamente (para leer o escribir) a una zona comun. A esto se le llama exclusion mutua.

A la parte del programa donde se accede a la zona compartida se le llama seccién o regién critica. Hay var
soluciones a las condiciones de carrera, pero todas ellas deben cumplir estas cuatro condiciones:

» Dos procesos no pueden estar nunca dentro de sus regiones criticas al mismo tiempo.

« No puede haber suposiciones de tiempo (ni de velocidad) de los procesos.

» Nunca un proceso que no esté en su region critica va a poder bloquear a otro proceso (si se esta er
region critica si se deberan bloquear los otros procesos).

» Ningun proceso debe tener que esperar un tiempo arbitrariamente largo (puesto que estamos en un
sistema de tiempo compartido no vale esperar a que termine un proceso para seguir con el otro).

A lo largo de la historia han surgido varias soluciones, que veremos en el siguiente apartado. Algunas se hg
visto que no funcionan.

» Programacién concurrente

3.1. Exclusién mutua con espera activa

Prohibicion de las interrupciones.

Es la primera solucion de las condiciones de carrera: cuando un proceso quiere acceder a su seccion critici
debe prohibir todas las interrupciones. Asi nadie lo interrumpira hasta que no termine con la region critica;

dicho momento se habilitan de nuevo las interrupciones. El planificador ya podra pasar a otro proceso.

Se asegura la exclusibn mutua pero esto no es conveniente en los procesos de usuario, pues asi los usuar
acapararian todo el procesador si pueden inhabilitar las interrupciones a su antojo.

Ademas, si hay varios procesadores en el sistema, prohibir las interrupciones seria para un solo procesado
los demas podrian acceder a las variables compartidas.

Este método sélo es bueno en monoprocesadores dentro del ndcleo del sistema operativo y en realidad no
tiene espera activa.

Variables cerrojo.

Se tiene una variable cerrojo compartida con valor inicial cero. Si un proceso quiere entrar en su region criti
mira el cerrojo: si es cero entra, si es uno espera a gue se ponga a cero. Cuando entra, pone el cerrojo a ut

Cuando el proceso sale de su region critica, pondra el cerrojo de nuevo a cero. El problema es que el cerro
es una variable compartida y, por tanto, puede haber condiciones de carrera con ella (por ejemplo, dos
procesos pueden mirar el cerrojo a la vez, y si lo ven a cero, entran ambos en su region critica
simultdneamente).

Alternancia estricta.

Suponemos que hay dos procesos Ay B. El proceso A sigue el siguiente bucle infinito:

17

while (TRUE)

while (turno!=0);
seccion_critica();
turno=1;

seccion_no_critica();

Aqui se ejecutan alternativamente la seccién critica y la no critica.

La variable turno no la pueden modificar A y B al mismo tiempo (siempre se pregunta antes de entrar y le
contesta el otro). Algo similar ocurre para el proceso B:

while (TRUE)

while (turno!=1);
seccion_critica();
turno=0;

seccion_no_critica();

Aqui tenemos la variable turno. Si turno es cero entonces el proceso A entra en su seccion critica; al salir p
turno a uno y entonces le toca al proceso B.

Cuando se hace el while (turno!=1); o while (turno!=0); se produce una espera activa pues se produce una
comprobacion continua sin hacer nada. La espera activa tiene el problema de que se pierde mucho tiempo
CPU.

Sin embargo, supongamos gque inicialmente turno es cero. Entonces A entra en su seccion critica, y al salir
pone turno a uno, con lo que entra B en su seccion critica. Cuando sale B pone turno a cero y empieza a
ejecutar su seccién no critica. Supongamos ahora que esta seccién no critica es mucho mas larga que el
proceso A. Entonces A encuentra turno a cero, ejecuta su seccion critica, lo pone a uno, acaba también su
seccion no critica y quiere de nuevo ejecutar la seccién critica. Pero entonces turno es uno y ni siquiera B t
entrado en su seccion critica.

Esto no cumple una de las condiciones, pues al ser el proceso A mucho mas corto que el B, A tiene que
esperar constantemente a B. El planificador se sigue ejecutando. Con este algoritmo sélo estamos imponie
la alternancia al entrar en la seccién critica, no en la ejecucion.

Solucién de Peterson.

18

En ella ya no hay alternancia estricta.

Es como sigue:

#define FALSE O

#define TRUE 1

#define N 2

int turno;

int interesado[N];

entrar_en_regioén (int proceso)

{

int el_otro;

el_otro=1-proceso;

interesado [proceso]=TRUE;

turno=proceso;

while (turno==proceso && interesado[el_otro]==TRUE);

}

salir_de_region (int proceso)

{

interesado[proceso]=FALSE;

}

N es el nimero de procesos que quieren acceder a su seccion critica.

turno es la variable que indica a quién le toca el turno.

interesado es un vector de enteros (en realidad de variables booleanas, 0 6 1) de N elementos.

Antes de entrar en la regién critica se entra en la funcién entrar_en_regién. Si el proceso que quiere entrar
cero, el otro se pone a uno y viceversa. Previamente a todo, el vector interesado se inicializa a FALSE, per
agui se pone a TRUE interesado[proceso] (proceso es 0 6 1 indicando si es el primer o segundo proceso).
Si el while no se cumple se entra en la region critica. Si se cumple, se queda bloqueado en dicho while.

Al salir de la regi6n critica se ejecuta la funcion salir_de_region.

19

¢Por qué se hace la pregunta turno==proceso en el while si se acaba de asignar? Se hace por si justo al hg
turno=proceso el planificador cambia de proceso y el otro también hace turno=proceso (turno es una variab
compartida). Si no se comprueba si turno==proceso ambos procesos se quedarian blogueados ya que amkt
interesado[el_otro]==TRUE. O sea, el primer proceso en hacer turno==proceso entra y el segundo en hace
se gueda bloqueado.

Aqui no se fuerza a la alternancia estricta pues el mismo proceso puede entrar varias veces seguidas.

La instrucciéon TSL (Test and Set Lock).

Esta instruccion va a hacer una comprobacion y una asignacion a un cerrojo. Lee el contenido de una
direccién de memoria y carga un valor distinto de cero. El hardware va a asegurar que estas dos cosas van
ser una operacion indivisible, para que ningln otro proceso a procesador pueda acceder a la memaoria entre
ambas instrucciones que, por tanto, se ejecutaran de una sola vez.

Es como sigue:

entrar_en_region();

tsl registro, indicador

cmp registro, #0

jnz entrar_en_region

ret

salir_de_region;

mv indicador, #0

ret

Cualquier proceso que quiera entrar en su region critica ejecuta la funcion entrar_en_region. En ella, la
instruccién tsl guarda el indicador en registro, y carga un valor de uno, todo seguido. Ahora se compara cor
cero y si no es igual no se bloguea. Pero si el indicador es uno, el uno se almacena en el registro y se qued
un bucle hasta que el proceso que sale de la region critica ejecute salir_de_regién y ponga cero en el

indicador.

Aqui no se da el problema de la variable cerrojo compartida, ya que al ser tsl una instruccion indivisible no
puede haber dos procesos que vean el cerrojo a cero a la vez.

Hasta aqui los métodos de exclusion mutua con espera activa, los cudles tienen el problema de que se
desaprovecha tiempo de CPU sin hacer nada. Pero hay otro problema adicional. Supongamos que hay dos
procesos Hy L, siendo H de prioridad mas alta que la del L. Ademas, supongamos que H esta bloqueado €
una E/S, por lo que podra estar ejecutandose L, y de hecho vamos a suponer que lo esta, y ademas que es
su region critica. Si en ese momento termina la E/S de H, H pasa a estar listo, por lo que el planificador con
gran probabilidad decidira que se ejecute H ya que es de mayor prioridad. Si ahora H quiere entrar en su
region critica, debe esperar a que L termine de ejecutar la suya, pero L no va a terminar ya que se esta
ejecutando H, y L es de menor prioridad. Es decir, se ha producido un interbloqueo de procesos.

Por todo esto a partir de ahora vamos a ver soluciones para obtener la exclusion mutua pero sin espera act

20

3.2 Exclusién mutua sin espera activa
Son métodos en los que si un proceso no puede entrar en su region critica se queda bloqueado, no en un t
Dormir y despertar (sleep & wakeup).
Dormir va a ser una llamada al sistema que lo que hace es bloquear al que llama hasta que otro proceso lo
haga despertar. Despertar es otra llamada al sistema que despierta al proceso que se le pase como param
De esta manera el proceso bloqueado no gasta tiempo de CPU. Como ejemplo vamos a ver el problema de

productor—-consumidor.

Vamos a hacer las suposiciones de que existe un buffer finito que es compartido por los dos procesos, que
productor coloca los elementos en el buffer y que el consumidor quita elementos del buffer.

Productor y consumidor deben sincronizarse: si el buffer esta lleno, el productor no debe colocar mas
elementos, sino bloquearse; y si el buffer esta vacio sera el consumidor el que deba blogquearse.

Lo que se hace es:
#define N 100

int cuenta=0:
productor()

{

while (TRUE)

{

producir_elemento();

if (cuenta==N) dormir();
dejar_elemento();

cuenta=cuenta+1;

if (cuenta==1) despertar(consumidor);
}

}

Esto es para el productor, para el consumidor:

consumidor();

{

while (TRUE)

21

if (cuenta==0) dormir();
retirar_elemento();

cuenta=cuenta-1

if (cuenta==N-1) despertar (productor);

consumir_elemento;

Se define N=100 como el tamafio del buffer.
cuenta es una variable entera que indica el nimero de elementos que hay en el buffer.

El productor esta en un bucle infinito donde produce elementos y los deja en el buffer si hay sitio; si no lo
hay, se duerme. Cuando puede dejar el elemento, lo hace incrementando ademas cuenta y pregunta si cue
€S uno, pues en ese caso anteriormente cuenta era cero, con lo cual el consumidor puede estar dormido, p
gue lo despierta (no estaria dormido si no ha intentado coger nada).

Para el consumidor, si el buffer esta vacio, se duerme. Si no, coge un elemento, decrementa cuenta y mira
cuenta es N-1, pues en ese caso probablemente el productor estaba dormido, ya que antes cuenta era igu
N.

Sin embargo, hay un problema en este algoritmo: supongamos que el consumidor mira la variable cuenta y
ésta es cero. En ese momento, el planificador decide cambiar al productor, el cual produce un elemento,
incrementa cuenta y manda un despertar al consumidor, pero éste adn no estaba dormido por lo que el
despertar se pierde. Entonces, el consumidor se dormiria al volver a él, y el productor seguiria hasta llenar
buffer, durmiéndose también él. O sea, ambos se interbloquean.

Esto sucede ya que cuenta es una variable global, por lo que se produce una condicién de carrera.

Una posible solucién es guardar las sefiales de despertar, que éstas no se pierdan. Eso es lo que hace la
siguiente solucion.

Seméforos.
Un semaforo es una variable entera sobre la que tenemos dos operaciones diferentes:

 Bajar: (eninglés, wait). Lo que hace es comprobar el valor del semaforo. Si es mayor que cero,
decrementa el valor y continlGia. Si es cero, se pone a dormir. Esta es una operacién atémica:
comprobar el valor del semaforo, y decrementar o dormir, van a hacerse en un solo paso (debe
garantizarlo el sistema operativo).

 Subir: (eninglés, signal). Puede que haya procesos esperando en el semaforo. Si hay procesos
esperando, despierta a uno de ellos. El planificador decide cudl de ellos se va a despertar y el
semaforo conserva su valor. Si no existen procesos esperando se incrementa el valor del semaforo.
hay un proceso que encontré el semaforo a cero y se puso a dormir, entonces subir no incrementa e

22

semaforo. También ha de ser una operacién atémica.
La operacion bajar puede bloquear un proceso, pero la operacién subir nunca bloquea a nadie.
Para conseguir que haya operaciones atémicas, el sistema operativo puede, por ejemplo, prohibir las
interrupciones en ellas. Esto no era bueno en procesos de usuario, pero si para el sistema operativo. Sin
embargo, prohibir las interrupciones no sirve si existen varios procesadores en paralelo en el sistema, en e:
caso, debera haber un variable cerrojo, para cuyo acceso debera usarse la instruccion tsl. La instruccion tsl
implica espera activa, pero en este caso no hace perder mucho tiempo, pues incrementar o decrementar el
semaforo tarda muy poco.
El programa correspondiente a la solucién con seméaforos seria, entonces:
#define N 100
typedef int semaforo;
semaforo mutex=1;
semaforo vacio=N;

semaforo lleno=0;

productor()

while(TRUE)

producir_elemento (&elemento);
bajar (&vacio);

bajar (&mutex);

dejar_elemento (elemento);
subir (&mutex);

subir (&lleno);

consumidor()

int elemento;

23

while (TRUE)

bajar (&lleno);

bajar (&mutex);
retirar_elemento (&elemento);
subir (&mutex);

subir (&vacio);

consumidor_elemento (elemento);

Tenemos tres semaforos: lleno indica el nUmero de elementos que hay en el buffer, vacio indica el nimero
posiciones vacias que quedan en el buffer y mutex es un semaforo binario que sélo vale cero o uno.

En el productor, si vacio es cero es que no hay huecos vacios. Entonces, el productor produce elementos (
tipo entero) en un bucle infinito, y llama a bajar(&vacio). Hemos supuesto que bajar y subir se llaman con la
direccién del argumento. Si vacio es cero, entonces el productor se duerme.

Pero si vacio es distinto de cero, se llama a bajar(%omutex), que sirve para proteger la seccién critica. Si no
hay ningun proceso en la regién critica, mutex valdria uno, se dejaria el elemento y se subirian mutex y llen

En el consumidor, si lleno es cero, el buffer esta vacio, por lo que se comprueba con bajar(&lleno). Si no, st
bloquea aqui, se hace bajar(&mutex). Si también se pasa, se quita un elemento, se suben mutex y vacio y ¢
consume el elemento.

Supongamos por ejemplo gue el productor se bloquea al bajar vacio. Seguira asi hasta que el consumidor 1
ejecute subir(&vacio).

Con mutex no se crean condiciones de carrera pues bajar y subir son operaciones indivisibles.

Hemos visto hasta aqui dos usos de los semaforos: el de exclusion mutua, del que se encarga el semaforo
mutex y la sincronizacién. Lo semaforos vacio y lleno se usan para sincronizar a productor y consumidor.

Se les llama semaforos binarios a los que sdélo pueden valer cero o uno. Dichos semaforos binarios se suel
usar muy a menudo para ocultar las interrupciones del siguiente modo:

» Vamos a tener un semaforo iniciado a cero para cada dispositivo de E/S.

» Cada vez que arranca una operacién de E/S, se baja el semaforo, con lo cual se bloquea el procesc

« El manejador de interrupciones ejecuta un subir para desbloquear el proceso (cuando llega la
interrupcion).

Vemos que esto no deja de ser un proceso de sincronizacion.

24

Los semaforos se usan mucho pero son dificiles de programar. Por ejemplo, supongamos que, en el produ
intercambiamos de orden bajar(&vacio) y bajar(&mutex); al llegar a bajar(&mutex), que es ahora la primera,
mutex, que es uno, lo pone a cero. Pero si ahora el buffer esta lleno, al hacer bajar(&vacio) el productor se
bloquea, y el consumidor se bloquearia al hacer él bajar(&mutex). O sea, habria un interbloqueo.
Contadores de eventos.

Sobre un contador de eventos vamos a tener tres operaciones diferentes (al contador de eventos lo llamam
E):
* L eer: Devuelve el valor de E.
» Avanzar: Incrementa E. Se realiza en una operacion atomica.
» Esperar: Se espera que E valga V o mayor que V. Si E es menor que V, se bloquea el proceso; si e:
mayor o igual que V, se pasa.

Se implementan como llamadas al sistema. Los contadores de eventos nunca se decrementan. Ejemplo de
problema productor-consumidor:

#define N 100

typedef int contador_de_eventos;
contador_de_eventos ent =0;
contador_de_eventos sal=0;
productor();

{

int elemento, secuencia=0;
while (TRUE)

{

producir_elemento (&elemento);
secuencia=secuencia+l;
esperar (sal, secuencia—N);
dejar_elemento (elemento);

avanzar (&ent);

}
}

consumidor ()

25

int elemento, secuencia=0;

while (TRUE)

secuencia=secuencia+l;
esperar (ent,secuencia);
retirar_elemento(&elemento);
avanzar (&sal);

consumir_elemento (elemento);

Hay que tener en cuenta que debe cumplirse que el nimero de entradas ha de ser mayor o igual al nUmerc
salidas y que, ademas, la diferencia entre el nUmero de entradas y el de salidas ha de ser menor o igual qu
tamafio (ya que entradas es el nimero de elementos que hemos metido en el buffer y que salidas es el nar
de elementos que hemos sacado; tamarfio es el idem del buffer).

En el programa ent es un contador de eventos que cuenta los elementos metidos en el buffer y sal es un
contador de eventos que cuenta los elementos sacados del buffer.

En el productor secuencia es una variable auxiliar local para comprobar si el elemento producido puede ser
dejado, elemento es el elemento creado. Cuando se crea un elemento se incrementa secuencia. Con la
instruccién esperar(sal, secuencia—N) se comprueba la condicion segunda arriba explicada. Inicialmente sa
cero, secuencia es uno y N es cien, el productor deberia esperar a que el consumidor sacara algo e
incrementaria salida.

En el consumidor se incrementa secuencia y luego hace esperar(ent,secuencia), que no es mas que compit
la primera condicién arriba explicada. Inicialmente, pone secuencia a uno, para retirar el primer elemento,
pero deber& esperar a que ent se ponga a uno.

Como secuencia es una variable local tanto para el productor como para el consumidor no se produciran
condiciones de carrera.

El valor maximo de ent, sal y secuencia estara limitado por el rango maximo permitido para los enteros en
nuestro sistema.

Monitores.

Un monitor es un conjunto de procedimientos, variables y estructuras de datos agrupados en dicho monitor
gue es, pues, un tipo especial de médulo o paquete.

Los procesos pueden acceder a los procedimientos que estan dentro del monitor pero no a las estructuras

26

internas del monitor. Ademas, sélo un proceso puede estar a la vez activo dentro del monitor; no habra dos
procesos que ejecuten a la vez procedimientos del monitor. Suelen ser mecanismos de lenguajes de alto ni
por lo que el propio lenguaje debe permitirnos el uso de los monitores.

Es el propio compilador el que debe traducir el monitor, de forma que si al traducir hay un proceso activo nc
dejara que entre otro. Para ello se pueden usar semaforos binarios: cuando un proceso entre, que baje el
semaforo.

Todas las secciones criticas de los procesos se tendran asi implementadas en procedimientos dentro del
monitor de modo que sera el compilador quien asegure la exclusién mutua entre las regiones criticas. Un
ejemplo:

monitor ejemplo

integer i

condition c;

procedure_*();

end;

procedure_*();

end;
end monitor
La variable condition sirve para bloquear los distintos procesos caso de que sea necesario (por ejemplo en
caso del problema del productor—-consumidor). Se les llama variables condicién. Sobre ellas se pueden
ejecutar dos instrucciones:

 esperar: Bloquea al proceso que llama y deja entrar a otro proceso que estuviera esperando.

» darpaso: Desbloquea al proceso que se habia quedado bloqueado a la espera de una verdadera

condicion.

Ahora hay que solucionar que no haya dos procesos activos a la vez dentro del monitor. Para ello, la
operacién darpaso debe ser la Gltima instruccion dentro del monitor que ejecuten los procesos, pues si no,
habria dos procesos activos a la vez, o sea, inmediatamente después de dar paso a un proceso debe salir |
monitor.

Esto es parecido a dormir y despertar, s6lo que se asegura que darpaso sera posterior a esperar.

El monitor agrupa todas las secciones criticas, y le encarga al compilador que evite que dos procesos acce

27

a la vez a sus secciones criticas. O sea, se trata de una solucién a mas alto nivel que los seméaforos.

Si, por ejemplo, el productor esta dentro del monitor y ejecuta esperar, ya no esta activo, por lo que podra
entrar el consumidor. Pero cuando éste ejecute darpaso, tendra que salir del monitor.

Ejemplo: problema del productor—-consumidor.

No vemos lenguaje C ahora, sino algo parecido a PASCAL, y es que el C no lleva implementados los
monitores.

monitor ProductorConsumidor
condition lleno,vacio;

integer cuenta;

procedure depositar;

begin

if cuenta=N then esperar (lleno);
depositar_elemento;
cuenta:=cuenta+1;

if cuenta=1 then darpaso (vacio);
end

procedure retirar;

begin

if cuenta=0 then esperar (vacio);
retirar_elemento;
cuenta:=cuenta+1;

if cuenta=N-1 then darpaso (lleno);
end

begin

cuenta:=0;

end

end monitor

28

procedure productor

begin

while true do

begin

producir_elemento;
ProductorConsumidor.depositar;
end

end

procedure consumidor

begin

while true do

begin
ProductorConsumidor.retirar;
consumir_elemento;

end

end

Las variables condicion son lleno y vacio, para esperar a que el buffer esté lleno y vacio respectivamente.

Dentro del bucle infinito del productor se llama al procedimiento depositar dentro del monitor. Algo similar
ocurre en el consumidor con el procedimiento retirar.

cuenta es una variable del monitor para contar el nUmero de elementos del buffer.

El buffer debe ser una estructura dentro del monitor, para asegurar la exclusién mutua.

El problema de los monitores es que pocos lenguajes los traen implementados.

Paso de mensajes.

Las soluciones vistas hasta ahora sirven para asegurar la exclusion mutua en sistemas donde la memoria ¢
comparte entre varios procesadores. Pero no son validas en sistemas distribuidos donde no hay memoria

compartida. En este caso se puede usar el paso de mensajes.

En esta solucidon vamos a tener dos primitivas: enviar (send) y recibir (receive). Ambas van a ser funciones
biblioteca, de forma que en la libreria tendremos procedimientos para ambas:

29

enviar (destino, &mensaje)
recibir (origen, &mensaje)
El paso de mensajes tiene, sin embargo, algunos problemas:

Se pueden perder mensajes en la red (por eso el transmisor debe esperar un asentimiento de que ha llegac
bien el mensaje).

Si se pierde el asentimiento se reenviaria el mensaje, por lo que habria que seguir una secuencia (numerac
en los mensajes, para que se supiera que ha llegado el mismo repetido.

Hay, ademas, que identificar los procesos. Para renombrar procesos dentro de una misma maquina se pue

hacer;_proceso@maquina.dominios

El dominio sirve para aliviar la nomenclatura, de modo que en distintos dominios puede haber maquinas co
el mismo nombre.

También hay que tratar la autentificacion para que otro que no sea el destinatario no pueda leer el mensaje
(para ello se pueden cifrar los mensajes).

Ejemplo: problema del productor—-consumidor:
#define N 100

productor()

int elemento;
mensaje m;

while (TRUE)

producir_elemento (&elemento);

recibir (consumidor,&m);

formar_mensaje (&m,elemento);

enviar (consumidor,&m);

consumidor()

30

mailto:proceso@maquina.dominios

int elemento i;
mensaje m;

for (i=0 ; i<N ; i++)
enviar (productor,&m);

while (TRUE)

recibir (productor, &m);
extraer_elemento (&m, &elemento);
enviar (productor, &m);

consumir_elemento (elemento);

Lo primero que hace el consumidor es enviar N mensajes vacios (o inicializados aleatoriamente) al product
El sistema operativo, a la llegada, almacena los mensajes en un buffer hasta que el productor ejecute recib
Si el sistema operativo no tiene ninglin mensaje, al hacer recibir el productor se bloquea.

El productor, al recibir un mensaje, crea otro nuevo y lo manda al consumidor. Este se bloquea hasta que n
reciba el mensaje, caso de que ejecutara recibir antes de que el productor lo enviara; si fuera al revés, el
sistema operativo en la maquina del consumidor, guardaria el mensaje hasta que el consumidor lo pidiera.

El propio sistema operativo gestiona los envios, por lo que no se produciran condiciones de carrera.

Esto seria también una forma de sincronizar dos procesos que estan en distintas maquinas. La sincronizac
se hace mediante el bucle for del consumidor y mediante enviar y recibir (entre el consumidor y el producto
habréa siempre un flujo de N mensajes).

Al empezar, el buffer temporal del productor tiene N mensajes. El productor enviara un mensaje, pero si el
consumidor no lo recibe (porque no quiere, no porque se pierda) enviara otro, y otro, hasta N; en ese mome
se acabaran los mensajes. Cuando el consumidor recibe un mensaje, envia otro de forma que el productor
vez podra enviar su siguiente mensaje ya que el consumidor ya le ha informado de que ha consumido un
mensaje. De este modo se garantiza que el productor se bloguea cada vez que manda N mensajes consec
sin que sean consumidos.

Hay otra forma de comunicar mediante paso de mensajes en la cual el sistema operativo no tiene buffer do
meter 10s mensajes mientras sean pedidos por los procesos (a estos buffers se le llama buzones). Los vere
mas adelante.

Suponiendo que productor y consumidor estan en dos maquinas distintas el paso se hace a través de un bl

De esta forma el método es sin espera activa, pues si el buffer esta vacio y se ejecuta recibir, el proceso se
bloguea. Se garantiza la exclusién mutua (aunque, por ejemplo, haya mas de un productor) pues es el prop

31

sistema operativo quien se encarga de ellos.

Este método es parecido a los tubos (pipes), con la diferencia de que en el paso de mensajes se preserva |
configuracién de los mensajes. Por ejemplo, en un pipe si mando 100 caracteres, por el otro lado puedo lee
dos veces 50 caracteres. En el paso de mensajes debo leer 100.

Rendezvous (encuentro o cita).

Es un caso de paso de mensajes pero sin buzén.

Lo que se hace es obligar a sincronizarse en cada paso al proceso que envia y al que recibe: el proceso qu
envia se queda a la espera de que el otro lo reciba (se queda bloqueado).

Equivalencia entre primitivas.
Vamos a ver algunos ejemplos de implementar algunas primitivas a partir de otras.
Semaforos para implementar monitores.

Supongamos que tenemos un compilador que puede soportar monitores pero en el sistema operativo sélo |
semaforos. ¢ Como usamos los semaforos para implementar los monitores? Lo que hay que hacer es:

» Tener un semaforo por cada monitor iniciado a uno que controla la entrada al monitor.
« Para entrar en el monitor se ejecuta bajar.
« Para salir del monitor se ejecuta subir.
» Habra que tener también un seméaforo iniciado a cero por cada variable condicion.
Inplementariamos entonces las primitivas esperar y darpaso.
esperar:
subir mutex
bajar c
bajar mutex
darpaso:

subir ¢

mutex es el semaforo asociado al monitor. Al esperar, se sube mutex para que otro proceso pueda entrar e
monitor. ¢ es el semaforo asociado a la variable condicion.

Monitores para implementar semaforos.
Es el caso opuesto al anterior. Deberemos tener:
» Un contador para almacenar el valor del semaforo.

» Una lista enlazada para poner los procesos que estén esperando en el seméaforo.
» Una variable condicién por proceso.

32

Y cada primitiva:
bajar:
decrementa el contador si es mayor que cero.

si es cero, se hace esperar en la variable condicién asociada al proceso (si es cero antes de decrementar, |
después). Antes de hacer esperar, hay que afadir el proceso a la lista.

subir:

se comprueba si hay algin proceso en la lista. Si lo hay, se hace un darpaso y se actualiza la lista.

si no hay nadie en la lista, se incrementa el contador.

La exclusiéon mutua en el semaforo queda garantizada por la naturaleza del monitor.

Mensajes para implementar semaforos.

Si el sistema operativo dispone de llamadas al sistema enviar y recibir, se puede utilizar un sincronizador q
recibe un mensaje con lo que se quiere hacer (subir o bajar) y el semaforo sobre el que quiere actuar. El
sincronizador va a tener un contador y una lista de procesos bloqueados por cada semaforo. Si se puede

realizar la operacion se envia un mensaje al proceso que solicité la llamada.

Si no se puede, no envia mensaje de vuelta al proceso, que se queda bloqueado y se almacena en la lista
procesos blogueados por el seméaforo. El proceso primero llamaria a enviar y luego a recibir.

bajar:

si el contador es mayor que cero: decrementar, enviar mensaje al proceso.
si el contador es igual a cero: afiadir proceso a lista.

subir:

enviar mensaje al proceso.

si hay proceso blogueado, desbloquear el proceso de la lista eliminada.
enviar mensaje al proceso eliminado.

Problemas clasicos de comunicacién entre procesos.

Para ver que la solucién a un programa concurrente es acertada se suele probar su funcionamiento con los
problemas siguientes.

Problema de la comida de los fil6sofos.
Fue un problema planteado por Dijkstra.

Supongamos que en una mesa redonda estan sentados cinco fildsofos. Existen cinco tenedores, pero la co
es china por lo que cada filésofo precisa dos tenedores para comer.

33

La vida de los fil6sofos consiste s6lo en pensar y comer.

Si un filésofo quiere comer debe tomar el tenedor que esta a su izquierda y a su derecha pero sélo podra
hacerlo si los dos fil6sofos que estén a su lado no estan comiendo.

Se trata, por tanto, de un problema de recursos compartidos.
Una solucién posible es:
#define N 5

filosofo (i)

while (TRUE)

meditar ();
coger_tenedor (i);
coger_tenedor ((i+1)%N);
comer();

dejar_tenedor (i);

dejar_tenedor ((i+1)%N);

Esta solucion no es buena, pues si todos los filésofos cogen a la vez el tenedor a su izquierda, todos se
bloguearian a la vez.

Otra posibilidad seria, antes de bloquearse intentando coger el de la derecha, mirar si el filésofo de la derec
ya lo ha cogido, en cuyo caso soltaria el de la izquierda, esperaria un tiempo y volveria a intentarlo. Esto
tampoco valdria si todos empiezan a la vez a coger el tenedor de la izquierda, y cuando esperan, esperan ¢
mismo tiempo.

A este problema se le llama inanicién: Cuando al intentar usar un recurso compartido, todos se bloquean y
nunca lo usan.

Se podria pensar en que el tiempo que espera cada uno sea aleatorio. El interbloqueo se daria entonces m
raramente, pero en ciertos sistemas no debe ocurrir nunca (por ejemplo, en una central nuclear).

Una solucién que si es valida es con semaforos, cuando un filésofo empieza a comer bajaria un semaforo ¢

forma que otro no podria comer hasta que ese semaforo no se subiera. O sea, coger los tenedores estaria
dentro de la region critica. Sin embargo, esta solucion tiene un problema: que sélo un filésofo podria estar

34

comiendo a la vez, mientras que con cinco tenedores podrian estar comiendo hasta dos filésofos a la vez.
Veamos una solucién que permite el maximo paralelismo posible:
#define N 5

#define izquierda (i+N-1)%N
#define derecha (i+1)%N
#define meditando 0

#define hambriento 1
#define comiendo 2

typedef int semaforo;

int estado[n];

semaforo mutex=1;
semaforo s[NJ;

filosofo(int i)

{

while(TRUE)

{

meditando();
coger_tenedores(i);

comer();

dejar_tenedores(i);

}

}

coger_tenedores (int i)

{

bajar(&mutex);

estado[i]l=hambriento;

35

comprobar(i);
subir(&mutex);
bajar(&sli]);

}

dejar_tenedores (int i);
{

bajar(&mutex);
estado(i)=meditando;
comprobar(izquierda);
comprobar(derecha);
subir(&mutex);

}

comprobar (int i)

{
if(estado[i]==hambriento&&estado[izquierda]!=comiendo&&
estado[derecha]!=comiendo)
{

estado[i]=comiendo;
subir(&sli]);

}

}

En coger_tenedores se pone en el vector de entradas que el filosofo correspondiente esta hambriento. Per
vector de estados esta en la regidn critica, asi que primero se intenta bajar mutex. Ahora se comprueba si
fildsofo i puede comer, lo cual se cumple si no estan comiendo ni el de su izquierda ni el de su derecha; en
caso se pone comiendo en el estado y se sube el vector de semaforos (el cual estaria inicializado a cero).
la comprobacion se sube mutex porque ya se ha salido de la region critica, y se baja s]i]; si el filésofo tiene
estado comiendo, no se bloqueard, pero si no, s[i]=0 y se bloquea.

En dejar_tenedores, tras bajar mutex para entrar en la region critica y poner el estado del fildsofo en

meditando, se comprueba para el filésofo de la izquierda y el de la derecha, por ejemplo, si el fildsofo uno
quiere dejar los tenedores, comprueba si el cero y el dos pueden comer. Asi, para el cero, si el cero esta

36

hambriento y el uno y el cuatro no estan comiendo (el uno se sabe que no lo esta), se sube el semaforo del
cero, desbloqueando al fil6sofo cero, que posiblemente se quedo en el bajar(&s]i]); de coger_tenedores. Lo
mismo se hace para el filésofo dos.

Problema de los lectores y escritores.

Tenemos una base de datos a la que pueden acceder muchos procesos. No nos importara que varios proc
lean a la vez en la base de datos, pero si un proceso esta escribiendo en la base de datos no dejaremos qL
haya mas procesos en ella, ni leyendo ni escribiendo.

Por tanto, tendremos un semaforo que sera bajado por el escritor al entrar en la base de datos y subido al ¢
También los lectores tendran que bajar el semaforo para ver si habia un escritor dentro.

La solucion ser& entonces:
typedef int semaforo;
semaforo mutex=1;
semaforo bd=1;

int nl=0;

lector()

{

while(TRUE)

{

bajar(&mutex);
nl=nl+1;

if (nI==1) bajar (&bd);
subir (&mutex);
leer_de_base_de_datos();
bajar(&mutex);
nl=nl-1;

if (NI==0) subir (%bd);
subir (&mutex);

utilizar_datos_leidos();

}

37

escritor()

while (TRUE)

generar_datos ();
bajar (&bd);
escribir_en_base_de_datos();

subir(&bd);

Tenemos dos semaforos, inicializados a uno. mutex me asegura la exclusion mutua en nl, gue es una varia
compartida por los lectores. bd asegura la exclusion mutua en el acceso a la base de datos.

Cuando entra el primer lector, se pone bd a cero. El resto de lectores, al entrar, no bajan bd pues entonces

guedarian blogueados. De igual forma, al salir es sélo el ultimo lector el que sube bd, que se pondra a uno
cuando ya no haya lectores.

El escritor s6lo podra entrar cuando bd sea uno. Mientras el escritor esta en la base de datos bd es cero y 1
puede entrar ningun lector, pues el primero debe bajar bd.

Redes de Petri.

Es una técnica de especificacion formal de sistemas. Es una herramienta grafica. La utilidad de una técnice
especificacion o descripcién formal (FDT) es la siguiente:

En un programa secuencial la forma de depurar es mediante prueba y error. Pero en programacion concurr
es mucho mas dificil escribirlos, depurarlos y corregirlos; es incluso complicado reproducir el caso especific
en gue un proceso puede fallar. Ademas, la fase de depuracién de un proyecto es muy costosa. Por todo e
se intenta que la depuracion sea facil, pues ademas mientras mas avanzados estemos en el proyecto mas
sera corregir un error de disefio inicial.

Las FDT intentan disminuir los costes de depuracion, dando unas especificaciones muy claras de forma qu
un sistema sera correcto si las cumple (se intenta probar que un sistema es correcto incluso antes de
implementarlo).

Hay multitud de FDT's: Z, VDM, SOL, ESTELLE, LOTOS, redes de Petri, etc.

Las redes de Petri se utilizan para modelar sistemas siendo sus caracteristicas las siguientes:

» Hacen posible modelar comportamientos que comprenden concurrencia, sincronizacion y recursos

38

compartidos.

» Con ellas se puede comprobar si un sistema cumple ciertas caracteristicas (de esta forma se puede
detectar ciertos errores en el sistema incluso antes de su realizacion.

« Si el andlisis del sistema no es satisfactorio no podriamos abordar la implementacion; en caso
contrario si podriamos hacerlo con bastantes garantias.

Las aplicaciones mas utilizadas son:
« Sistemas de fabricacién (en industrias).
« Sistemas informaticos (sistemas operativos).
* Protocolos de comunicacion.
Una red de Petri es un grafo orientado compuesto por dos clases diferentes de nodos:
 Los lugares: representados por una circunferencia o una elipse. Se llama P al conjunto de los lugare
P sera un conjunto finito y no vacio.
» Las transiciones: representadas por un trazo rectilineo vertical. El conjunto de transiciones es Ty

también es finito y no vacio.

Lugares y transiciones se unen alternativamente con arcos. O sea, un arco une una transicién con un lugar
viceversa pero no entre dos lugares o dos transiciones.

Formalemente una red de Petri es una cuadrupla que se compone de P, T, Pre, Post.

Pre esta incluido en PxT. Post esté incluido en TxP. Si el par (p,t) esta incluido en Pre, habra un arco de p «
y se dice que p es un lugar de entrada para t. Si el par (t,p) esta incluido en Post, habra una flecha de t a p,
dice que p es un lugar de salida para la transicion t.

Normalmente a las transiciones se les asocian acciones y a los lugares condiciones.

O sea, Pre marca las precondiciones de una transicion. Asimismo, Post da las postcondiciones de una
transicion.

Marcado de las redes de Petri.

En una red de Petri, los lugares pueden contener un ndmero positivo o nulo de marcas (tokens) las cuales
representan por puntos. Se habla de M(p) como el marcado del lugar p.

El nimero de marcas en una red de Petri no tiene por que ser constante a lo largo del tiempo. Se denomine
al marcado inicial, y se dice que es la distribucién de marcas en cada uno de los lugares en el instante inici

Un marcado se puede representar como un vector, donde cada elemento se corresponde con un lugar.

Se dice que una transicidn esta sensibilizada o validada, o que es franqueable, si todos sus lugares de entr
estan marcados.

Una transicion es franqueada o disparada si se verifica el acontecimiento (accién) a que esta asociada, en |
caso se dispara o franquea. El disparo o franqueo de una transicién consiste en :

» Se quita una marca de cada lugar de entrada de esa transicion.
» Se afiade una marca a cada lugar de salida de esa transicion.

39

La primera transicién se denomina transicion fuente y no tiene ningun lugar de entrada. La dltima es una
transiciéon sumidero y no tiene ningun lugar de salida.

Por ejemplo:
Suponiendo que el ejemplo anterior se refiere a una barberia:

e pl: un cliente espera.

* p2: el barbero espera.

» p3: un cliente estéa siendo atendido y el barbero trabaja.

« 11: el barbero empieza un afeitado.
Si la situacion inicial es la anterior es que un cliente y el barbero estan esperando. Entonces t1 esta validad
se disparara cuando el barbero comience. En ese instante, se quita una marca de ply de p2 y se pone otr:
p3: se cumple asi la postcondicion.
Ahora vamos a suponer que tenemos varios clientes:

e pl: cliente espera.

e p2: barbero inactivo.

* p3: cliente estéa siendo servido.

 p4: cliente atendido.

« t1: entra cliente.

« 12: barbero empieza.

« 13: barbero termina.

* t4: sale cliente.

Cuando entra un cliente, espera. Si hay un cliente esperando y el barbero esta inactivo, el barbero empieza
Cuando acaba, el cliente esta atendido y puede salir.

Comportamientos modelables con las redes de Petri.
Con una red de Petri podemos modelar:
» Acciones secuenciales:
« Acciones concurrentes: t1 y t2 son transiciones que se pueden disparar de forma concurrente:
» Exclusiéon mutua o conflicto: t1 y t2 comparten un lugar de entrada comun. Si dicho lugar de entrada

estuviera marcado, tl y t2 serian ambas franqueables, pero s6lo podemos disparar una. Se produce
conflicto. Ademas, existe exclusién mutua entre ambas, se dispara una o la otra:

40

