COMPARATIVA DE LOS MODELOS DE PROCESO DE SOFTWARE

|. DESCRIPCION DE LOS MODELOS DE PROCESO DE SOFTWARE
EL MODELO LINEAL (O MODELO EN CASCADA).

Es el mas antiguo de todos los modelos de Ingenieria del Software. El modelo lineal presenta una
estructura secuencial (de ahi el nombre de Modelo en cascada) formada por seis fases o etapas:

- Analisis del Sistema

— Andlisis de Requisitos de Software
- Disefio

- Codificacion

- Prueba

- Mantenimiento

Las fases incluyen dentro de si determinadas tareas que clasifican de una forma clara el trabajo a
realizar.

El desarrollo de las fases, como he mencionado antes, se produce de manera secuencial. Una vez se
produce el analisis tanto del Sistema como de los requisitos del software demandado por el cliente,
(fases en las que la intervencién del cliente es absolutamente necesaria), se procede a la fase de disefio
de la arquitectura global del software. Un disefio elaborado de forma cuidadosa llevara a una rapida
codificacién. Tras haber traducido el programa a un lenguaje comprensible para el ordenador, se
comprueban los elementos de forma individual y méas tarde de manera homogénea (todos los sistemas a
la vez). Una vez entregado el software al cliente, la fase de Mantenimiento comprendera las
actualizaciones y las correcciones de errores que sean necesarias en el programa.

El Modelo en cascada no permite retroceder (mas tarde analizaremos las ventajas e inconvenientes de
todos los modelos en comun), por lo que se hace estrictamente necesario que al final de cada fase el
analista de sistemas 0, en su caso, el programador, verifique y valide todo el trabajo realizado, ya que
un error no detectado a tiempo podria perjudicar gravemente la fecha de entrega del software a
nuestro cliente.

EL MODELO INCREMENTAL.

El modelo incremental es una evolucién del modelo de cascada; viene a suplir el problema de no poder
retroceder en las fases de desarrollo del software. Es, por tanto, un modelo no secuencial.

El funcionamiento es sencillo. Comienza con el analisis de los requisitos, tras el cual se prepara un
primer disefio. La novedad de este modelo respecto del anterior, es la introduccién de iteraciones para
bifurcar disefos. Es decir, este modelo ofrece la posibilidad de comenzar un disefio, arquitectura,
estructura, etc del software, que de no convencer al cliente (o al propio programador) es rechazado y se



comienza con una segunda iteracion (o un segundo disefio), sin necesidad de realizar un nuevo analisis
de requisitos. Pueden realizarse tantas iteraciones (también llamadas incrementos) como sean
necesarias.

EL MODELO DE CONSTRUCCION DE PROTOTIPOS.

Este modelo no secuencial, basado en la construccion de simulaciones o modelos ejecutables de
aplicaciones mas extensos, persigue un objetivo principal: la participacién directa del cliente en la
construccion del software requerido. Las fases son similares a las del modelo en cascada: es necesario
un analisis previo de los requisitos tanto del sistema como del cliente, se concibe la arquitectura del
sistema y se realiza el disefio del software. Sin embargo, se incluye un elemento hasta ahora no
utilizado, que consiste en el disefio rapido de un prototipo que se mostrara al cliente para que evalle el
trabajo realizado.

El prototipo es una versién reducida del programa completo; es una fachada virtual que mostramos al
cliente (que carece de la posibilidad de ser utilizada de la forma en que lo hariamos con el software

final. Tras recoger los requisitos tanto del cliente como del sistema, se comienza con el disefio rapido del
prototipo; el disefio completo obedece al previo disefio de pequefios prototipos especificos para
funciones individuales. Mas tarde, estos disefios seran unidos en uno sélo.

Después, se procede a la construccion del mismo. Este prototipo es el que mostraremos al cliente para
gue lo evallie y considere cambios en él, aunque no se trate de una version definitiva.

EL MODELO EN ESPIRAL.

Este modelo, también no secuencial, es algo mas complejo que los anteriores, aunque incluye un
elemento muy Util e importante en el desarrollo del software: analisis de riesgos. El modelo en espiral
concreta cuatro fases:

- Planificacion

— Andlisis de Riesgos

- Ingenieria (Construccion del prototipo)

— Evaluacion por el cliente

Si ésta Ultima fase es afirmativa, el modelo contintia con la estructura del Ciclo de vida Clasico. Si el
cliente no esta satisfecho con el resultado, se cubre otra banda de la espiral y se vuelve a la primera fase
(de planificacion).

II. VENTAJAS E INCONVENIENTES DE LOS MODELOS

Podemos considerar al modelo en cascada como el mas sencillo de utilizar, aunque también podriamos
dudar de su eficacia dado el alto nimero de inconvenientes que presenta, siendo el principal el que se
trate de un modelo secuencial; por otra parte, este modelo exige tareas de profundizacién en el analisis
de requisitos del sistema. Si este sistema no es bien conocido, o es dificil de analizar, esta fase puede
alargarse demasiado.

Ninguno de los modelos es perfecto; el modelo incremental afiade la posibilidad de utilizar iteraciones

para doblegar el disefio y contemplar varias posibilidades hasta elegir una. Es un modelo
completamente interactivo, que permite trabajar con él en situaciones en las que los cambios de opinién



estén a la orden del dia. Cada incremento es un paso mas en el desarrollo del software final, lo que nos
permite cambiar entre iteraciones (o bien proceder a la entrega del software a nuestro cliente como si se
tratara de fasciculos semanales).

Esta ventaja es también el principal inconveniente; no en todas las situaciones de desarrollo de software
podemos permitirnos la division del trabajo en incrementos, ni tampoco periodificar la entrega de los
mismos. Ademas, aunque la mayoria de las veces el software se puede fragmentar y podemos trabajar
con un conjunto de programas determinado, pueden darse situaciones en las que sea imposible ejecutar
una iteracién sin la existencia de otra que cumpla una funcion complementaria.

Los prototipos (cambiando de modelo), son una herramienta muy eficaz para imaginar el software
completo de una forma rapida y sencilla. De esta forma, incluso observando el prototipo podemos
descubrir requerimientos del software en los que antes no habiamos reparado. Mejora también el
proceso de introduccién de cambios en el desarrollo de los programas. En el modelo incremental
podiamas recurrir a las iteraciones, pero resultara mas sencillo (y sobre todo, mas visual) realizar éstas
modificaciones sobre el prototipo en cuestion. Ademas, ésta operacion puede realizarse bajo la
supervision del cliente, lo que hace a éste modelo mas interactivo alin que su predecesor. Sin embargo,
los prototipos tienen un gran problema en contraposicién a sus ventajas: la rapidez con la que se
disefian y construyen pueden llevar a errores que no sean detectados en la fase de prueba y acaben
integrandose en el producto final. Ademas, un prototipo es una representacion casi exacta del
programa final, carente de contenido real. Pero esto es algo que el cliente desconoce; si tiene prisa,
puede creer que nuestro trabajo estd mucho mas avanzado de lo que creia (a pesar de que el prototipo
sea tan sélo la fachada de un edificio sin paredes ni escaleras) y puede optar por adelantar la fecha de
entrega; al final, el pobre programador es el que paga las consecuencias haciendo horas extras y,
ademas, si se acelera demasiado la construccién del sistema final volvemos al problema de la inclusion
de errores no detectados a tiempo.

Por raro que sea, o dificil de entender, el modelo en espiral parece entender los problemas de los
anteriores e intentar subsanarlos. Si en el modelo anterior utilizdbamos prototipos para hacernos una
idea del software final, en éste modelo los utilizaremos también para hacernos una idea detallada de
cudles son los errores que tiene, o podria tener el programa durante su funcionamiento (lo que antes
llamabamos analisis de riesgos). Esta manera de enfocar el disefio del software permite al cliente
evaluar los factores de riesgo que le comunica el prototipo de analisis de riesgo, y segun esta
informacién tomar una decision u otra. Esto hace que el modelo en espiral sea todavia mas interactivo
que los anteriores.

En cada fase se evalla el trabajo terminado vy, si nos dan el visto bueno, continuamos girando en la
espiral hasta que llegamos a la evaluacién del cliente, la cual decidira si continuamos en el modelo
clasico o volvemos a la primera fase del modelo en espiral. Sin embargo, todo éste analisis de riesgos
(que tan util parece ser) no parece facil de utilizar; un analisis de riegos detallado utilizado sin
experiencia podria sobre valorar (o subestimar) los errores que se presenten, haciendo imposible en
paso a la siguiente fase (y entonces si que nos meteriamos en una verdadera espiral sin fin, cosa que al
cliente no debe hacerle mucha gracia). Este problema genera otro adicional, y es que viendo estas
situaciones, sera dificil convencer al cliente para que acepte un proyecto realizado bajo las condiciones
de éste modelo.

l1l. ¢ DEBEMOS UTILIZAR UNA METODOLOGIA DE DESARROLLO?

Es obvio; imaginemos que el analista de sistemas esta desarrollando un plan de requisitos del software y
el programador hace una simple imagen mental del programa y comienza a codificar la informacion
recibida. Sin una arquitectura previa, es dificil hacer una casa. Mas dificil debe ser hacer un programa

0 un conjunto de ellos. Utilizar una metodologia de desarrollo puede conllevar algunos inconvenientes,



pero éstos son sencillos de subsanar. Ademas, establecer el trabajo en fases distribuye el desarrollo de
una forma ordenada, lo que hace que cada uno se ocupe de su trabajo y no de aquel por el cual no le
pagan. El orden escalonado, la posibilidad de retroceder (excepto en el modelo en cascada) en nuestro
disefio o codificacion, la interactividad con el cliente, la presentacién de proyectos preliminares
(prototipos) y las exigentes fases de prueba y mantenimiento, vienen a ser las principales ventajas de la
metodologia de desarrollo del software.

IV. TIPOS DE PROYECTOS PARA CADA MODELO

Es dificil hacer una discriminacion exacta de para qué tipo de proyecto sirve cada modelo. Sin
embargo, es mas facil decir para que tipo de proyectos o desarrollos NO sirve un modelo.

Por ejemplo; supongamos que realizamos un proyecto de sistemas informaticos de gestion para una
empresa gue acaba de establecerse en el Nuevo Mercado de Valores. Esta empresa se dedica a invertir
el dinero de sus clientes en bolsa, valiéndose para ello de prestigiosos inversores financieros. Pues bien,
ésta empresa sabe que acaba de introducir su actividad en uno de los negocios mas inestables del
mundo, como también inestables seran las exigencias de sus clientes y del mercado, las leyes que
cambian casi una vez a la semana, las caidas repentinas de mercados extranjeros en los que la empresa
tiene invertida gran parte de su capital, etc. Evidentemente, el uso del modelo en espiral, o el de cascada
para informatizar la actividad de la empresa sera como tratar de hablar en binario. Pasar de un

analisis preliminar a un disefio de la arquitectura del sistema llevaria consigo la condicion de haber
revisado y validado este andlisis, pero hay una gran posibilidad de que a los dos o tres dias la empresa
necesite hacer una correccion de sus requisitos. Jamas llegariamos a la cuarta fase (en el caso del
modelo en espiral) o simplemente nunca dariamos con el resultado necesario para la empresa. Esta
actividad es, sin embargo, mas concordante con el modelo incremental. Podemos entregar piezas del
software gque sean necesarias para cubrir una actividad relativamente estable, mientras que

continuamos perfeccionando el resto de iteraciones. Si se producen modificaciones en los requisitos,
procedemaos analizarlos y catalogarlos y a disefiar una nueva iteracion que sera incluida en el producto
final una vez esté terminada.

Si un cliente nos pide un paquete de software de control de la asignacién de nimeros de tarjetas de
crédito a titulares de cuentas bancarias, proteccién de codigos de seguridad, etc, una de nuestras
principales prioridades sera la de detectar el mas minimo fallo en la elaboracién del software, porque
cualquier rendija acaba por convertirse en una autopista para los amigos de lo ajeno. La creacién de un
prototipo de control de errores (analisis de riesgo) exigente puede facilitar y acelerar esta tarea.
Estamos hablando del modelo en espiral.

Hemos dicho que el uso de prototipos genera una forma de trabajar mucho mas visual que todo lo visto
anteriormente. El uso de este modelo podria responder a un cliente obsesionado con la presentacion de
su software, calidad visual que lo haga mucho mas facil de utilizar (tal y como si se tratara de un

sistema operativo adaptado a su empresa). Las empresas dedicadas a la compraventa de productos de
primera necesidad (como pueden ser supermercados o tiendas de ropa) no necesitan complejos sistemas
informaticos que lleven la contabilidad, o que visualicen de forma rapida en pantalla la relacion

unidades, precio unidad, total. Sin embargo, una empresa de telefonia maovil exigira paquetes de

software avanzados, concretos y , sobre todo, lo mas visuales posibles. La creacién de prototipos ayuda
a que nuestro cliente imagine su propio software tal y como si él estuviera elaborandolo.

Por ultimo, y para terminar, que ya esta bien, el modelo en cascada obedece a las necesidades de un
desarrollo de software sencillo, corto, y sin posibles obstaculos que detengan su disefio o construccion.
No aconsejaria a nadie el uso de este modelo en empresas que necesiten un paquete de software
compuesto de muchas piezas, porque no es precisamente el mejor modelo para desarrollar
interactividad, ni tampoco para crear estructuras de software complejas.



V. EVALUACION PERSONAL DE LOS MODELOS

Me quedo con los prototipos. La espiral es demasiado compleja; ademas, con el modelo de prototipos
podemos también hacer una evaluacion de riesgos (aunque un poco mas sencilla) antes de ponernos a
estructurar y codificar el sistema completo. EI modelo incremental es bueno, pero las iteraciones
pueden llevar un poco a la confusién (podemos incluir en el disefio de una iteracién lo que ya estaba
disefiado en otra). Sin duda, el Ciclo Clasico es el peor. Una metodologia de desarrollo secuencial es
muy dificil de llevar y presenta muchos problemas afiadidos a los que ya nos encontremos.



