Programacion Estructurada
INTRODUCCION

La computadora automatica debe su derecho a existir, su utilidad, precisamente a su capacidad de efectua
vastos calculos que no pueden realizar los seres humanos. Deseamos que la computadora efectle lo que r
podriamos hacer nosotros, y la potencia de las maquinas actuales es tal, que inclusive los céalculos pequefi
por su tamafio, escapan al poder de nuestra imaginacion limitada.

Sin embargo debemos organizar el calculo de manera tal que nuestros limitados poderes sean suficientes |
asegurar que se establecera el efecto deseado. Esta organizacion incluye la composicién de los programas

Los avances en la tecnologia siempre van parejos con progresos en los lenguajes de programacion y con
nuevas ayudas para simplificar el uso del computador, con lo cual un numero mayor de usuarios se benefic
del. Pero la necesidad de hacer programas para resolver problemas especificos quizds nunca desaparecer

CONCEPTO DE PROGRAMACION ESTRUCTURADA

EL creciente empleo de los computadores ha conducido a buscar un abaratamiento del desarrollo des
software, paralelo a la reduccién del costo del hardware obtenido gracias a los avances tecnoldgicos. Los a
costos del mantenimiento de las aplicaciones en produccién normal también han urgido la necesidad de
mejorar la productividad del personal de programacion.

En la década del sesenta salieron a la luz publica los principios de lo que mas tarde se llamo Programacion
Estructurada, posteriormente se libero el conjunto de las llamadas "Técnicas para mejoramiento de la
productividad en programacion” (en ingles Improved Programming Technologies, abreviado IPTs), siendo I
Programacion Estructurada una de ellas.

Los programas computarizados pueden ser escritos con un alto grado de estructuracion, lo cual les permite
mas facilmente comprensibles en actividades tales como pruebas, mantenimiento y modificacion de los
mismos. Mediante la programacion Estructurada todas las bifurcaciones de control de un programa se
encuentran estandarizadas, de forma tal que es posible leer la codificacién del mismo desde su inicio hasta
terminacion en forma continua, sin tener que saltar de un lugar a otro del programa siguiendo el rastro de Iz
I6gica establecida por el programador, como es la situacion habitual con codificaciones desarrolladas bajo
otras técnicas.

EN programacién Estructurada los programadores deben profundizar mas que lo usual al procedera realiza
disefio original del programa, pero el resultado final es mas facil de leer y comprender, el objetivo de u
programador profesional al escribir programas de una manera estructurada, es realizarlos utilizando solame
un numero de bifurcaciones de control estandarizados.

EL resultado de aplicar la sistematica y disciplinada manera de elaboracién de programas establecida por I
Programacion Estructurada es una programacion de alta precision como nunca antes habia sido lograda. L
pruebas de los programas, desarrollados utilizando este método, se acoplan mas rapidamente y el resultad
final con programas gue pueden ser leidos, mantenidos y madificados por otros programadores con mucho
mayor facilidad.

DEFINICIONES

Programacion Estructurada es una técnica en la cual la estructura de un programa, esto es, la interpelacior



sus partes realiza tan claramente como es posible mediante el uso de tres estructuras l6gicas de control:

» Secuencia: Sucesiéon simple de dos 0 mas operaciones.
* Seleccion: bifurcacion condicional de una 0 mas operaciones.
* Interacciéon: Repeticién de una operacion mientras se cumple una condicion.

Estos tres tipos de estructuras l6gicas de control pueden ser combinados para producir programas que mat
cualquier tarea de procesamiento de informacion.

Un programa estructurado esta compuesto de segmentos, los cuales puedan estar constituidos por unas pc
instrucciones o por una pagina o mas de codificacién. Cada segmento tiene solamente una entrada y una
salida, estos segmentos, asumiendo que no poseen lazos infinitos y no tienen instrucciones que jamas se
ejecuten, se denominan programas propios. Cuando varios programas propios se combinan utilizando las t
estructuras basicas de control mencionadas anteriormente, el resultado es también un programa propio.

La programacién Estructurada esta basada en el Teorema de la Estructura, el cual establece que cualquier
programa propio (un programa con una entrada y una salida exclusivamente) es equivalente a un programe
gue contiene solamente las estructuras l6gicas mencionadas anteriormente.

Una caracteristica importante en un programa estructurado es que puede ser leido en secuencia, desde el
comienzo hasta el final sin perder la continuidad de la tarea que cumple el programa, lo contrario de lo que
ocurre con otros estilos de programacién. Esto es importante debido a que, es mucho mas facil comprende
completamente el trabajo que realiza una funcién determinada, si todas las instrucciones que influyen en

su accion estan fisicamente contiguas y encerradas por un bloque. La facilidad de lectura, de comienzo a fi
es una consecuencia de utilizar solamente tres estructuras de control y de eliminar la instruccion de desvio
flujo de control, excepto en circunstancias muy especiales tales como la simulacién de una estructura légic:
de control en un lenguaje de programacién que no la posea.

VENTAJAS POTENCIALES

Un programa escrito de acuerdo a estos principios no solamente tendra una estructura, sino también una
excelente presentacion.

Un programa escrito de esta forma tiende a ser mucho mas facil de comprender que programas escritos en
otros estilos.

La facilidad de comprension del contenido de un programa puede facilitar el chequeo de la codificacion y
reducir el tiempo de prueba y depuracion de programas. Esto ultimo es cierto parcialmente, debido a que la
programacion estructurada concentra los errores en uno de los factores mas generador de fallas en
programacion: la légica.

Un programa que es facil para leer y el cual esta compuesto de segmentos bien definidos tiende a ser simp
rapido y menos expuesto a mantenimiento. Estos beneficios derivan en parte del hecho que, aunque el
programa tenga una extension significativa, en documentacion tiende siempre a estar al dia, esto no suele
suceder con los métodos convencionales de programacion.

La programacién estructurada ofrece estos beneficios, pero no se la debe considerar como una panacea Yz
el desarrollo de programas es, principalmente, una tarea de dedicacion, esfuerzo y creatividad.

TEOREMA DE LA ESTRUCTURA



El teorema de la estructura establece que un programa propio puede ser escrito utilizando solamente las
siguientes estructuras légicas de control: secuencia, seleccién e iteracion.

Un programa de define como propio si cumple con los dos requerimientos siguientes:

« Tiene exactamente una entrada y una salida para control del programa.
« Existen caminos seguibles desde la entrada hasta la salida que conducen por cada parte del programa, €
decir, no existen lazos infinitos ni instrucciones que no se ejecutan.

ETIQUETAS E INSTRUCCION GOTO:

Ocasionalmente se habla de la programacion estructurada como una técnica de programacién que no utiliz
GOTO(instruccion de desvio del flujo de control en forma incondicional); si bien es cierto que un programa
bien estructurado tiene, o bien ninguna o muy pocas instrucciones GOTO, asumiendo que estamos emplea
un lenguaje de programaciéon adecuado, la ausencia de instrucciones GOTO puede ser mal interpretada. E:
conveniente que aclaremos este aspecto en este momento.

Un programa bien estructurado gana una parte importante de su facil comprension del hecho que puede se
leido en forma secuencial sin desvios en el flujo de control desde una parte del programa a otra. Esta
caracteristica es consecuencia de usar exclusivamente las estructuras légicas de control estandar (el GOT(
es una de ellas), esta secuencialidad o lectura TOPDOWN es beneficiosa debido a que hay un limite definic
para muchos detalles que la mente humana puede abarcar de una vez. Se hace relativamente facil y rapide
comprension de la tarea que realiza una instruccion si su funcion puede ser entendida en términos de unas
pocas instrucciones mas, fisicamente contiguas y delimitadas.

El problema con la instruccién GOTO es que generalmente aleja al programa realizado de los propdsitos
descritos y en casos extremos puede hacer que un programa sea esencialmente incomprensible.

No se requieren esfuerzos especiales para eliminar de un programa los GOTO, los cuales han sido, alguna
veces, malentendidos como enemigos de la programacioén estructurada, existen buenas y fundadas razone
para no querer usarlos pero no se necesita que se realice un trabajo arduo para eliminarlo; ellos no aparece
en general, cuando se utilicen las estructuras logicas de control, descritas anteriormente. Naturalmente, si
escogemas para programar un lenguaje de computacién que no posea las estructuras légicas de control
fundamentales, entonces, tendremos que simularlas y seguramente ello implicara el uso de la instruccién
GOTO; pero este uso puede hacerse en forma cuidadosamente controlada.

Existen situaciones poco comunes en las cuales el uso de GOTO puede tener ventajas comparado con otre
maneras de expresar un proceso; estos casos son excepcionales y usualmente no ocurren en la programac
realizada diariamente.

Se deben analizar cuidadosamente las consecuencias de emplear el GOTO, antes de su uso.
SEGMENTACION

Para la comprensién de un programa se haga en forma facil y rapida es necesario que, al revisarlo, uno no
tenga que hojear una gran cantidad de paginas para entender cuales el trabajo que realiza. Una regla pract
para lograr estos fines es establecer que cada segmento del programa no exceda, en longitud, a una pagin
codificacién, o sea, alrededor de 50 lineas (el significado que se asigna al termino segmento, en este traba;
no tiene ninguna relacién con su significado en relacion a las funciones de sistemas operativos o sistemas
maneadores de Bases de Datos).

La segmentacion no es solamente particionar un programa en trozos cuya longitud sea de unas 50 lineas; ¢



técnica debe cumplir con ciertas caracteristicas fundamentales:

» La segmentacion reflejara la division del programa en partes que se relacionen entre si en forma jerarquit
formando una estructura de arbol. Esta organizacion puede ser representada graficamente por un diagra
de procesos, lo que hace mas sencillo comprender la relacién existente entre un segmento y el resto del
programa. Adicionalmente, podemos indicar que, el segmento en la cumbre de la estructura jerarquica
contendra las funciones de control de mas alto nivel, mientras que los segmentos inferiores en esta
organizacién contendran funciones detalladas.

» Una segmentacion bien disefiada debera mostrar, claramente, las relaciones existentes entre las distinta:
funciones de manera que sea facil comprender lo que debe hacer el programa y asegurar que efectivame
lo realice. Este hecho, garantizara que los cambios que se efectlien a una parte del programa, durante la
programacion original o su mantenimiento, no afecten al resto del programa que no ha sufrido cambios.

» En una segmentacion bien realizada la comunicacién entre segmentos se lleva a cabo de una manera
cuidadosamente controlada. Algunos autores recomiendan que los segmentos consistan en procedimien
la Gnica comunicacion existente entre ellos sea a través de una lista de parametros, esto reduce la
oportunidad de que interactuen entre ellos de una manera indeseada e inentendible.

IDENTACION

El uso de la identacion es importante debido a que, cuando se es consistente en su utilizacién, facilita la
lectura del programa al mostrar en una forma gréafica las relaciones existentes entre las distintas instruccion

La identacion puede ser de gran beneficio, tal como se muestra continuacién, donde ambos programas
realizan la misma funcién, pero el de la derecha es mas facil de comprender, verificar y corregir.

DIRECTRICES PAR IDENTAR

Debe comprenderse claramente que las lineas siguientes solo pretenden presentar unas directrices de
identacion, sin pretender que estas sean las Unicas reglas a seguir en este proceso, cada centro de
procesamiento debera establecer sus propias convenciones, sin que sea motivo de preocupacion la diferen
respecto a las sugerencias dadas aqui, lo importante es que se establezcan unas normas y se cumplan de
manera consistente.

Las siguientes son sugerencias para el desarrollo de una politica de identacion en un centro de procesamie
la idea fundamental es ayudar a que el lector de un programa le sea facil comprender las relaciones y las
funciones existentes en él:

» En los lenguajes donde se permite el uso de etiquetas, estas deben colocarse lo mas externas posibles, |
ejemplo comenzando en la columna 2, y deben estar separadas por una linea (siempre que lo permita el
lenguaje en uso).

» Se obtiene consistencia si todas las instrucciones se comienzan en una misma columna, por ejemplo en
columna 4 o cualquier otra ubicada a su derecha.

» En los lenguajes en que se hagan declaraciones sobre las variables a utilizar, la informacion quedara ma
claramente representada si los atributos declarados se alinean en forma vertical.

 El uso de lineas en blanco ayuda a mostrar con mas claridad las relaciones existentes entre distintos iten
agrupados en las declaraciones

« Las instrucciones son mucho mas faciles de localizar y de cambiar si no se escribe mas de una instruccic
por linea.

« La vision de control de las estructuras ldgicas o de los bloques se clarifica si las instrucciones controlada:
son idénticas por alguna cantidad constante. Se sugiere una identacion de tres espacios.



VENTAJAS DE LA PROGRAMACION ESTRUCTURADA

Con la programacion estructurada elaborar programas de computador sigue siendo un albor que demanda
esfuerzo, creatividad, habilidad y cuidado. Sin embargo, con este nuevo estilo podemos obtener las siguien
ventajas:

» — Los programas son mas faciles de entender. Un programa estructurado puede ser leido en secuencia, |
arriba hacia abajo, sin necesidad de estar saltando de un sitio a otro en la logica, lo cual es tipico de otro
estilos de programacioén. La estructura del programa es mas clara puesto que las instrucciones estan ma:
ligadas o relacionadas entre si, por lo que es mas facil comprender lo que hace cada funcién.

» Reduccion del esfuerzo en las pruebas. El programa se puede tener listo para produccién normal en un
tiempo menor del tradicional; por otro lado, el seguimiento de las fallas("debugging") se facilita debido a ;
I6gica mas visible, de tal forma que los errores se pueden detectar y corregir mas facilmente.

» Reduccion de los costos de mantenimiento.

» Programas mas sencillos y mas rapidos

« Aumento de la productividad del programador

« Se facilita la utilizacién de las otras técnicas para el mejoramiento de la productividad en programacién

« Los programas quedan mejor documentados internamente.



