Planificacion de procesos en monoprocesadores
Indice
Necesidad de la planificacién

En épocas pasadas de los sistemas de procesamiento por lotes (batch), la idea que existia sobre la
planificacién era bastante simple y consistia en aplicar un algoritmo secuencial. Esto producia un
desaprovechamiento muy importante de las capacidades del procesador ya que la ejecucién de un procesc
alternaba entre dos estados de ejecucién: utilizando la CPU o esperando a que se realice una operacion de
por lo que mientras se trabajaba con un dispositivo, el procesador se encontraba inactivo.

Mas tarde, surgieron los sistemas multiprogramados, en donde se intentdé maximizar la utilizacion de la CP!
Esto se pudo conseguir manteniendo varios procesos en la memoria, y cuando un proceso tenia que esper
sistema operativo le quitaba la CPU y se lo asignaba a otro proceso que se encontraba en dicha memoria.
lo tanto, la tarea de la planificacion cobro gran importancia por su incidencia directa sobre el rendimiento de
sistema, ya que el sistema operativo debia decidir qué proceso esperaria y qué proceso continuaria.

Definicién

Podemos definir a la planificacién como un conjunto de politicas y mecanismos incorporados al sistema
operativo, a través de un médulo denominado planificador, que debe decidir cual de los procesos en
condiciones de ser ejecutado conviene ser despachado primero y qué orden de ejecucion debe seguirse. E
debe realizarse sin perder de vista su principal objetivo que consiste en el maximo aprovechamiento del
sistema, lo que implica proveer un buen servicio a los procesos existentes en un momento dado. Un buen
servicio podria traducirse en tiempo de respuesta aceptable, productividad y eficiencia del procesador.

Niveles de planificacién

La planificacion se hace en cuatro instantes de tiempo. De estas cuatro, una no la realiza el sistema operat
sino que es externa al procesamiento, pero tiene una influencia enorme sobre la definicién del procesamier
dado que el sistema operativo queda determinado por las decisiones que se toman en este nivel. A esta
instancia le daremos el nombre de extra largo plazo por ser en la escala de tiempo del ser humano.

En la administracion del procesador podemos distinguir tres niveles de planificacién de acuerdo a la escala
tiempo en que se realiza la misma. El largo plazo en segundos, mediano plazo en milisegundos y el corto
plazo en nanosegundos o microsegundos.

Planificacion a extra largo plazo

Consiste en una planificacién externa que se hace en el centro de cOmputos y esta estrechamente ligada a
politicas de funcionamiento del sistema, ya que se determina la importancia relativa de los usuarios. A trave
de procedimientos escritos se fijan las reglas que se aplicaran a los usuarios relativos al uso, seguridad,
accesos, prioridades, etc, asi como también las reglas en cuanto a modalidad de procesamiento, la operaci
la politica de backup, etc.

Esta planificacién busca satisfacer cuatro objetivos desde el punto de vista de los usuarios:

« Mayor velocidad de respuesta en sus trabajos con lo que disminuye el tiempo de espera de los usuarios.
« Existencia y disponibilidad de recursos que necesitan para ejecutar sus trabajos.

* Importancia de sus tareas.
» Seguridad de que sus trabajos sean completados correctamente.

Por lo tanto, es responsabilidad del profesional de sistemas brindar un adecuado servicio de procesamientc
datos como también ocuparse del orgware y del peopleware para que todo funcione dentro de lo establecid

Planificacion a largo plazo

El planificador a largo plazo, scheduler o planificador de trabajos, es un administrador que se encarga de
organizar la ejecucion con un adecuado planeamiento de recursos para que el trabajo se ejecute
ordenadamente y eficientemente segun la modalidad de procesamiento.

El sheduler se ejecuta con poca frecuencia, sélo cuando se necesita crear un nuevo proceso en el sistema,
cuando termina un proceso, o0 ingresa un usuario en el sistema, por lo que tiene prioridad maxima para
ejecutar. Es el responsable de controlar el nivel de multiprogramacién del sistema y el balance de carga del
sistema. Esto Ultimo implica la seleccidon cuidadosa de trabajos para mantener un adecuado balance de car
de procesos que hacen uso de E/S intensivo (I/O bound) o uso de CPU intensivo (CPU bound).

Procedamos a describir un poco su accionar ante un nuevo trabajo. Un software del sistema operativo,
llamado monitor, recibe al nuevo trabajo y lo carga en la memoria central. Después de haber sido recibido €
trabajo, el sheduler se encarga de preparar y crear procesos con sus respectivos bloques de control del prc
(PCB) para poder ejecutarlos. Si los recursos que solicita estuvieran disponibles, se le asighan y se lo ingre
la cola de listos para ejecutar.

Existen diferentes filosofias en el procesamiento de un trabajo. Todas ellas responden a ciertos criterios de
planificacidon que se vuelcan en los respectivos algoritmos de planificacidn. Esto se conoce como la modalic
de ejecuciéon o procesamiento. Los mas importantes son:

¢ Batch: Apunta estrictamente al exhaustivo uso del procesador en detrimento del usuario. Su:
principales caracterisiticas son:
¢ La CPU es monoprogramada.
+ No existe diferencia entre trabajo y proceso.
¢ El scheduler elige el trabajo, crea el proceso y lo ejecuta.
¢ Practicamente hay un solo nivel de planificacion.
« Interactivo: Apunta al servicio del usuario en detrimento de la performance del procesador. Es
multiprogramado pues se multiplexa la CPU entre varios programas.
« Multiprocesado: Es un ambiente en el que existen varios procesadores para servir a los procesos er
ejecucion.
» Procesamiento distribuido 0 en red: Es una forma de procesamiento en que se le presenta al usuari
una maquina virtual y en que el procesamiento se realiza en distintas maguinas diseminadas
geograficamente y conectadas por una red.

En conclusién y siendo un poco mas precisos, podriamos decir que las tareas que involucra este ni\
de planificacién son:

Mantener un registro de estado de todos los trabajos en el sistema (JBC).

Establecer una estrategia para el pasaje entre las colas de suspendidos y la de listos.
Asignar recursos (memoria central, dispositivos, procesadores, etc.) a cada trabajo.

Pedir (recuperar) los recursos cuando los trabajos se han completado.

Detectar y prevenir los conflictos de abrazo mortal o deadlock.

Dar entrada a nuevos trabajos.

Asignar prioridades a los procesos. Esto genera el orden de ejecuciéon y viene determinado

* & & 6 O o o

basicamente por el orden de procesos en la cola de listos, o sea, el orden en el que el
dispatcher los seleccionara de esta cola para ponerlos en ejecucion (generalmente el primer
de la cola).
¢ Implementar las politicas de asignacion de recursos, razon por la que se le otorga la maxime

prioridad en el sistema para que el dispatcher lo seleccione primero si esta libre el procesadc
y se ejecuta cuando:

» Se pide o libera un recurso.

e Cuando termina un proceso.

« Cuando llega un nuevo trabajo al pool de procesos (lo ubica en la ready queue)

e Cuando llega un nuevo usuario al sistema.

Planificaciéon a mediano plazo

Es el que decide sacar de memoria central y llevar a disco (swap—out) a aquellos procesos inactivos
a los activos cuyos estados sean bloqueado momentaneamente o temporalmente o los suspendidos
luego, cuando desaparezcan las causas de sus bloqueos, traerlos nuevamente a memoria (swap—in
para continuar su ejecucion. Este tipo de planificador se encuentra solo en algunos sistemas
especialmente en los de tiempo compartido, ya que permite mantener un equilibrio entre los procest
activos e inactivos.

Este planificador puede ser invocado cuando quede espacio libre de memoria por efecto de la
terminacion de un proceso o cuando el suministro de procesos caiga por debajo de un limite
especificado.

En algunos casos suplanta al planificador de largo plazo y otros lo complementa: Por ejemplo en
sistemas de tiempo compartido, el long—term scheduler puede admitir mas usuarios de los que puec
caber realmente en memoria. Sin embargo, como los trabajos de estos sistemas estan caracterizad
por ciclos de actividad y ciclos de ociosidad, mientras el usuario piensa algunos procesos pueden se
almacenados y al recibir respuesta vueltos a poner en la cola de listos.

Este tipo de planificacion solo es usado en sistemas con mucha carga de procesos, ya que el
procedimiento de swapping produce mucho overhead, haciendo bajar considerablemente el
desempefio general.

Planificacién a corto plazo

También llamado short—term scheduler o low scheduler, es el responsable de decidir quién, cuando
cémo y por cuanto tiempo recibe el procesador un proceso que esta preparado (ready queue) para

ejecutar (los recursos a esta altura ya deben estar todos disponibles para este trabajo). Ademas en

sistemas operativos con esquemas expropiativos (se quita el recurso procesador al proceso) verifice
las interrupciones.

El planificador a corto plazo es invocado cada vez que un suceso (interno o externo) hace que se
modifique el estado global del sistema. Por ejemplo:

¢ Tics de reloj (interrupciones basadas en el tiempo).
¢ Interrupciones y terminaciones de E/S.
¢ La mayoria de las llamadas operacionales al sistema operativo (en oposicion a las llamadas
consulta).
¢ El envio y recepcion de sefales.
¢ La activacion de programas interactivos.
El low scheduler debe ser rapido y con poca carga para el procesador para que se mantenga el

rendimiento, ya que se le debe sumar ademas el tiempo que toma el cambio de contexto. El cambio
contexto o context switch consiste en la conmutacion de la CPU entre un proceso y otro y es overhe
puro, por lo tanto debe ser lo mas rapido posible. Algunos valores tipicos oscilan entre 1y 100 seg
gue se conoce como dispatch latency.

El context switch involucra:

¢ Preservar el estado del viejo proceso (guardar en el stack su PCB).

¢ Recuperar el estado del nuevo proceso (recuperar su PCB).

¢ Bifurcar a la direccién donde habia sido suspendido el nuevo proceso.
El proceso nulo o vacio

Un problema que debe resolver un sistema operativo multitarea es, qué deberia hacer el sistema
cuando no hay nada que ejecutar. Por ejemplo cuando la cola de listos se encuentra vacia.

Este problema es resuelto en muchos sistemas operativos con el proceso NULO que es creado por
sistema en el momento de arranque. El proceso nulo nunca termina, no tiene E/S y tiene la prioridac
mas baja en el sistema. En consecuencia la cola de listos nunca esta vacia, ademas la ejecucion de
planificador puede hacerse mas rapida al eliminar la necesidad de comprobar si la cola de listos est
vacia o no. Algunas de las tareas que se le pueden dar al proceso nulo, por ejemplo, es realizar
estadisticas de uso de procesador, o asistencia de vigilancia de la integridad del sistema, etc.

Algoritmos de planificacion

El planificador es el mddulo del sistema operativo que decide qué proceso se debe ejecutar, para el
usa un algoritmo de planificacion que debe cumplir con los siguientes objetivos:

Imparcialidad.

Politica justa.

Eficiencia: mantener la CPU ocupada en lo posible el mayor tiempo con procesos de usuario.
Minimizar el tiempo de espera de usuarios.

Maximizar el nUmero de procesos ejecutados. (Rendimiento: trabajos que se procesan por hora).
Tiempo de respuesta excelente (por ejemplo: minimizar el tiempo de respuesta para los usuarios
interactivos).

Predecibilidad en la ejecucion.

Equilibrio en el uso de los recursos.

Antes de comenzar a describir los respectivos algoritmos de planificacion, es importante conocer do
conceptos relacionados. Uno de ellos es la funcion de seleccion que determina qué proceso, de ent
los listos, se elige para ejecutar a continuacion. El otro es el modo de decisiéon o esquema de
planificacion, que especifica los instantes de tiempo en que se aplica la funcién de seleccién. Hay di
categorias generales:

Nonpreemptive scheduling (apropiativo) También conocido como cooperative multitasking. Una

vez que el proceso pasa al estado de ejecucion, continlia ejecutando hasta que termina, se bloquea
espera de una E/S o al solicitar algun servicio del sistema. Esta politica de ejecucién para terminaci
fue implementada en los primeros sistemas de lote (batch).

Preemptive scheduling (no apropiativo) Generalmente conocida como politica de planificacion por
torneo. El proceso que se esta ejecutando actualmente puede ser interrumpido y pasado al estado ¢
listos por el sistema operativo. La decisidén de sustituirlos por otro proceso puede llevarse a cabo
cuando llega un nuevo proceso, cuando se produce una interrupcién que lleva a un proceso blogue:
al estado listo o periédicamente, en funcién de una interrupcion del reloj.

Politica vs. Mecanismo

A veces ocurre que un proceso tiene muchos hijos ejecutandose bajo su control y es completament:
posible que el proceso principal tenga una idea excelente de cuales de sus hijos son los mas
importantes (o criticos respecto al tiempo), y cuales los menos. Por desgracia, ninguno de los
planificadores analizados hasta ahora acepta datos de los procesos del usuario relativos a decisione
de planificacién. Como resultado, el planificador pocas veces hace la mejor eleccion.

La solucidn a este problema es separar el mecanismo de planificaciéon de la politica de planificacion
Lo que esto quiere decir es que el algoritmo de planificacion queda parametrizado de alguna maner
pero los parametros pueden ser determinados por medio de procesos del usuario.

Supongamos que el kernel utiliza un algoritmo de planificacién, pero que proporciona una llamada a
sistema por medio de la cual un proceso puede establecer (y modificar) la prioridad de sus hijos. De
esta forma, el padre puede controlar en detalle la forma de planificar sus hijos, incluso aunque él
mismo no realice la planificacion. En este caso, el mecanismo esta en el kernel pero la politica quec
establecida por el proceso del usuario.

Criterios de la planificacion a corto plazo

Generalmente, se fija un conjunto de criterios con los que evaluar las diversas estrategias de
planificacion. El criterio mas empleado establece dos clasificaciones. En primer lugar, se puede hac
una distincion entre los criterios orientados al usuario y los orientados al sistema. Los criterios
orientados al usuario se refieren al comportamiento del sistema tal y como lo perciben los usuarios ¢
los procesos individuales. Los criterios orientados al sistema se centran en el uso efectivo y eficiente
del procesador.

Otra forma de clasificacion es considerar los criterios relativos al rendimiento del sistemay los que r
lo son. Los criterios relativos al rendimiento son cuantitativos y, en general, pueden evaluarse
facilmente. Los criterios no relativos al rendimiento son , en cambio, cualitativos y no pueden ser
evaluados o analizados facilmente.

Todos estos criterios son dependientes entre si y es imposible optimizar todos ellos de forma
simultanea.

CRITERIOS ORIENTADOS AL USUARIO, CRITERIOS DE RENDIMIENTO

Tiempo de retorno Es el intervalo de tiempo transcurrido entre el lanzamiento de un proceso y su
finalizacion. Es la suma del tiempo de ejecucion real y el tiempo consumido en la espera de los
recursos, incluido el procesador. Esta es una medida apropiada para trabajos por lotes.

Tiempo de respuesta Para un proceso interactivo, es el intervalo de tiempo transcurrido desde que ¢
emite una solicitud hasta que se empieza a recibir la respuesta. A menudo, un proceso empieza a
generar alguna salida para el usuario mientras que continta procesando la solicitud.

Plazos Cuando se pueden especificar plazos de terminacién de un proceso, la disciplina de
planificacion debe subordinar otras metas a la maximizacién del porcentaje de plazos cumplidos.

CRITERIOS ORIENTADOS AL USUARIO, OTROS CRITERIOS

Previsibilidad Un determinado trabajo se debe ejecutar aproximadamente en el mismo tiempo y con
el mismo coste sin importar la carga del sistema.

CRITERIOS ORIENTADOS AL SISTEMA, CRITERIOS RELATIVOS AL RENDIMIENTO

Productividad La politica de planificacién debe intentar maximizar el nUmero de procesos
terminados por unidad de tiempo. Depende de la longitud media de cada proceso, pero también est
influida por la politica de planificacién, que puede influir en el uso del procesador.

Utilizacion del procesador Es el porcentaje de tiempo en el que el procesador esta ocupado.
CRITERIOS ORIENTADOS AL SISTEMA, OTROS CRITERIOS
Equidad Los procesos deben ser tratados de igual forma y ningln proceso debe sufrir inanicion.

Prioridades Cuando se asignan prioridades a los procesos, la politica de planificacion debe favorece
a los de mayor prioridad.

Equilibrio de recursos La politica de planificacion debe mantener ocupados los recursos del sistema
Se debe favorecer a los procesos que no utilicen recursos sobrecargados. Este criterio también afec
la planificacién a medio y largo plazo.

Uso de prioridades

(Algoritmo apropiativo) En vez de una simple cola de listos, se ofrece un conjunto de colas en orden
de prioridad descendente. Cuando se vaya a realizar una seleccion de planificacién, el planificador
comenzard por la cola de listos de mayor prioridad. Si hay uno o mas procesos en esta cola, se
selecciona uno mediante alguna politica de planificacién. Si la cola de mayor prioridad esta vacia, st
examina la cola siguiente y asi sucesivamente.

Las prioridades pueden ser:

Internas o dinamicas: modificables por el sistema operativo en ejecucion mediante uno o mas
parametros medibles.

Externas o estéticas: puestas arbitrariamente por el centro de cémputos de acuerdo a factores
externos al sistema.

Un problema de los esquemas puros de planificacién por prioridades es que los procesos de priorid
mas baja pueden sufrir inanicién (starvation). Este problema ocurre si siempre hay un flujo continuo
de procesos listos de alta prioridad. Para superar este problema, la prioridad de un proceso puede
cambiar en funcién de su edad o su historial de ejecucion (aging).

Primero en llegar, primero en ser servido (FCFS First come first served)

(Algoritmo apropiativo) Con mucha diferencia, es el algoritmo de planificacion mas sencillo. Esto es,
el primer proceso en solicitar la CPU es el primero en recibir la asignacion de la misma. La
implementacién del FCFS se realiza facilmente mediante una cola FIFO. Cuando un proceso entra ¢
la cola de preparados o listos para la ejecucion (ready queue), su PCB se enlaza al final de la cola.

Cuando la CPU gueda libre, ésta se le asigna al proceso situado al principio de la cola. Entonces el
proceso en ejecucion se elimina de la cola. El cédigo para la planificacion FCFS es sencillo de
escribir y de comprender.

FCFS rinde mucho mejor con procesos largos que con procesos cortos.

Sin embargo, las prestaciones del FCFS son , con frecuencia, bastante pobres.
Los problemas que presenta son:

El tiempo medio de espera suele ser elevado.

Bajo nivel de utilizacion de la CPU.

Pobre tiempo de respuesta en procesos cortos en esquemas con mucha carga.

Tiende a favorecer a los procesos con carga de CPU frente a los que tienen carga de E/S.
Uso ineficiente de los dispositivos de E/S.

Turno rotatorio (RR Round robin)

(Algoritmo no apropiativo) El algoritmo de planificaciéon round-robin fue especialmente disefiado
para sistemas en tiempo compartido. Se define una pequefia unidad de tiempo comun llamada
guantum de tiempo o time slice, que generalmente tiene un valor entre 10 y 100 milisegundos. La cc
de listos se trata como una cola circular. El planificador de CPU recorre la cola asignando el
procesador a cada proceso durante un intervalo de tiempo de hasta un quantum.

Para implementar la planificacién RR, la cola se mantiene como una cola de procesos FIFO. El
planificador de la CPU selecciona el primer proceso de la cola, y Gnicamente puede salir del estado
ejecucion por tres motivos: que termine su ejecucion, se proceda al llamada a una E/S y el proceso
guede bloqueado o0 que se genere una interrupcion por haber superado un quantum de ejecucién de
proceso.

Si hay n procesos en la cola y el quantum de tiempo es g, entonces cada proceso obtiene 1/n del
tiempo de CPU en fragmentos de al menos g unidades de tiempo cada vez. Cada proceso tiene que
esperar no mas de (n—1) x g unidades de tiempo hasta su quantum de tiempo siguiente.

El conflicto surge en el momento de decidir la duracién del quantum de tiempo para cada proceso. S
el quantum es muy pequeio, produce mucho overhead por la gran cantidad de cambios de contextc
ejecucion que hace el sistema operativo. Si por el contrario, el quantum es muy grande produce un
tiempo de reaccién muy pobre porque los procesos en cola de listos esperan demasiado y si es infir
se convierte en FCFS. Es decir que para que sea eficiente, la duracién del context switch debe ser
mucho menor que el time slice.

Una desventaja del turno rotatorio es el tratamiento que hace si existe una mezcla de procesos
limitados por CPU y procesos limitados por E/S. En este caso, sucederia lo siguiente: un proceso
limitado por E/S utiliza el procesador durante un periodo corto y después se bloquea en la E/S; espe
a que se complete la operacion de E/S y entonces vuelve a la cola de listos. Por otro lado, un proce:
limitado por procesador generalmente hace uso de un cuanto de tiempo completo cuando se ejecut:
inmediatamente retorna a la cola de listos. Asi pues, los procesos con carga de procesador tienden
recibir una porcién desigual de tiempo de procesador, lo que origina un rendimiento pobre de los
procesos con carga de E/S, un mal aprovechamiento de los dispositivos de E/S y un incremento de
variabilidad del tiempo de respuesta.

Para solucionar este problema se implementa un algoritmo llamado VRR (virtual round-robin). La
nueva caracteristica consiste en una cola FCFS auxiliar a la que se desplazan los procesos una vez
son liberados de la espera por E/S. Al tomar una decisién sobre el siguiente proceso a expedir, los
procesos de la cola auxiliar tienen preferencia sobre los de la cola principal de listos. Cuando se
expide un proceso desde la cola auxiliar, no se puede ejecutar mas que un tiempo igual al cuanto
basico menos el tiempo total de ejecucion consumido desde que fue seleccionado por Ultima vez en
cola de listos.

Primero el proceso mas corto (SPN Shortest process next / SPF Shortest process first)

(Algoritmo apropiativo) Este algoritmo consiste en seleccionar el proceso con menor tiempo esperac
de ejecucion. La mejora del rendimiento global es significativa en términos de tiempo de respuesta,
sin embargo, se incrementa la variabilidad de los tiempos de respuesta, especialmente para proces
largos, reduciendo asi la previsibilidad.

Una dificultad que plantea SPN es la necesidad de conocer o estimar el tiempo exigido por cada
proceso. Para ello, generalmente se toma el promedio exponencial que permite predecir valores
futuros a partir de una serie de valores pasados.

Sn+l= Tn+(1-)Sn
Donde:

Ti = Tiempo de ejecucion en el procesador para el i—ésimo caso del proceso (tiempo total de
ejecucion para un trabajo por lotes; tiempo de rafaga de procesador para trabajos interactivos).

Si = Valor pronosticado para el caso i—ésimo.
= Factor constante de ponderacion. (0 <= <= 1) (generalmente se utiliza 0,5)

determina el peso relativo dado a las observaciones mas y menos recientes. Utilizando un valor
constante de , independiente del nimero de observaciones pasadas, se llega a una situacién en la
se tienen en cuenta todos los valores pasados, pero los mas distantes reciben un peso menor. Para
verlo con mas claridad, consideremos el siguiente desarrollo de la ecuacion anterior:

Sn+l=Tn+(1-)Tn-1+ +(1-)1Tn-i+..+(1-)nS1
S1 = Valor pronosticado para el primer caso; no calculado.

La ventaja de emplear un valor cercano a 1 es que la media reflejara rapidamente los cambios
repentinos en la cantidad observada. La desventaja es que si se produce un breve aumento en los
valores observados y después se vuelve a estabilizar en algan valor medio, el empleo de un valor
grande a generard cambios bruscos en la media.

Un riesgo gue existe en SPN es la posibilidad de inanicién para los procesos largos mientras exista
flujo continuo de procesos mas cortos. Por otro lado, aunque SPN reduce el sesgo favorable a los
procesos largos, no es conveniente para entornos de tiempo compartido o de procesamiento de
transacciones, debido a que es un algoritmo apropiativo.

Otra observacién importante es que se emplea una gran pérdida de tiempo para efectuar este célcu
por lo que no se utiliza este algoritmo.

Menor tiempo restante (SRT Shortest remaining time first)

Esta es la version no apropiativa del SPN, en la que el planificador siempre elige al proceso que le
gueda menos tiempo esperado de ejecucién. Por lo tanto, el planificador debe disponer de una
estimacion del tiempo de proceso para poder llevar a cabo la funcién de seleccion, existiendo el ries
de inaniciéon para procesos largos.

El algoritmo SRT no presenta el sesgo favorable a los procesos largos del FCFS. Al contrario que €|

turno rotatorio, este algoritmo es mas eficiente debido a que no se produce overhead muy frecuente
debido a que las interrupciones no son producidos por el reloj del sistema. Por el contrario, se debel
tener en cuenta los tiempos de servicio transcurridos, lo que contribuye a la sobrecarga. EI SRT
también deberia producir tiempos de retorno mejores que los del SPN, puesto que los trabajos cortc
reciben una atenciéon inmediata y preferente a los trabajos largos.

Primero el de mayor tasa de respuesta (HRRN Highest response ratio next)

(Algoritmo apropiativo) Cuando el proceso actual termina o se bloquea, se elige el proceso listo con
un mayor valor de R. Donde R es:

R=(w+s)/s

R = tasa de respuesta.

w = tiempo consumido esperando al procesador.
s = tiempo de servicio esperado.

La decisidn de planificacién se basa en una estimacion del tiempo de retorno normalizado. Lo que s
intenta es reducir al maximo las proporciones de tiempo R.

Este método es atractivo porque tiene en cuenta la edad del proceso. Aunque se favorece a los trab
mas cortos (un denominador menor produce una razén mayor), el envejecimiento sin que haya
servicio incrementa el valor de la razén, de forma que los procesos mas largos puedan pasar, en
competicion con los mas cortos. El tiempo esperado de servicio debe estimarse antes de emplear Ia
técnica de la mayor tasa de respuesta.

Planificacién con colas de multiples niveles y realimentacién
En el caso en que no se pueda determinar el tiempo de ejecucion, puede utilizarse este algoritmo.

La planificacion es de tipo no apropiativo por guantum de tiempo y un mecanismo de prioridades
dinamico. Cuando llega un proceso nuevo, este es colocado en la cola de mayor prioridad, luego de
primer ejecucion éste es colocado en la cola de prioridad siguiente menor y asi sucesivamente hast
gue llega hasta la ultima cola en donde se la vuelve a colocar en la misma nuevamente.

Dentro de cada cola se utiliza el algoritmo de planificacion FCFS, en el caso de la dltima se utiliza el
algoritmo round robin.

En este algoritmo puede llegar a ocurrir starvation en el caso de que entren frecuentemente procesc
nuevos, debido a que al tener mayor prioridad, no llega a ejecutarse los procesos de las ultimas col:
Para evitar esto, se utiliza un mecanismo de variacién del quantum de tiempo de ejecucién de los

procesos de acuerdo a la cola en la que se encuentra. A la cola RQi se le asigna 2i quantum de tien
de esta forma se trata de que menos procesos lleguen hasta la Gltima cola sin terminar su ejecucién

En el caso de que ocurra starvation, en un proceso que se queda sin ejecucion en la ultima cola, se
puede enviar nuevamente hasta la cola de mayor prioridad para que continte su ejecucion.

La idea de este algoritmo es separar los procesos con diferentes caracteristicas en cuanto a sus raf
de CPU. Si un proceso gasta demasiado tiempo en CPU, se le pasara a una cola con menor priorid:
Este esquema deja a los procesos limitados por E/S y los procesos interactivos en las colas de mas

prioridad.

En general, un planificador de colas multinivel con realimentacién esta definido por los siguientes
parametros:

¢ El nimero de colas.
¢ El algoritmo de planificacién para cada cola
¢ El método empleado para determinar cuando se debe promover un proceso a una cola de
mayor prioridad.
¢ El método empleado para determinar cuando se debe promover un proceso a una cola de
menor prioridad.
¢ El método empleado para determinar en cual cola ingresara un proceso cuando necesite
servicio.
La definicién de un planificador de colas multinivel con realimentacion lo convierte en el algoritmo
de planificacién de la CPU mas general, ya que se puede configurar para adaptarlo a cualquier siste
especifico que se este disefiando. Desdichadamente, se requiere alguna forma de seleccionar valor
para todos los parametros de manera que se obtenga el mejor planificador posible.

Aunque este esquema es el mas general, también es el mas complejo.

Planificacién por reparto equitativo (FSS Fair share scheduling)

En un sistema multiusuario, si las aplicaciones o los trabajos de los usuarios pueden organizarse en
forma de varios procesos (0 hilos), se dispone de una estructura para el conjunto de procesos que r
se identifica con ningun planificador tradicional. Desde el punto de vista del usuario, el interés no es
en cdmo se comporta un proceso en particular, sino en como se comporta el conjunto de procesos (
usuario que constituyen una aplicacion. Asi pues, seria interesante poder tomar decisiones de
planificacién en funcion de estos grupos de procesos. Este enfoque se conoce generalmente como
planificacién por reparto equitativo.

El término reparto equitativo hace referencia a la filosofia del planificador. Cada usuario tiene
asignado algun tipo de ponderacion, que indica la parte de los recursos del sistema para el usuario
como una fraccion de la utilizacion total de dichos recursos. En particular, cada usuario dispone de
una parte del procesador.

La planificacion se lleva a cabo por prioridades, teniendo en cuenta la prioridad basica del proceso,
utilizacion reciente de la CPU vy la utilizacion reciente de la CPU por parte del grupo al que pertenec
Cuanto mayor es el valor numérico de la prioridad, menor es ésta. Las férmulas siguientes se aplica
al proceso j del grupo k.

CPUj(i)=CPUj(i-1)/2

GCPUK(i) = GCPUk(i-1)/ 2

Pj(i) = Basej + CPUj(i — 1) / 2 + GCPUKk(i — 1) / (4 x Wk)

Donde:

CPUj(i) = Media ponderada de la utilizacion de la CPU del proceso j en el intervalo i.

GCPUK(i) = Media ponderada de la utilizacion de la CPU del grupo k en el intervalo i.

10

Pj(i) = Prioridad del proceso j al principio del intervalo i; los valores mas bajos indican prioridades
mas altas.

Basej = Prioridad de base del proceso |.
WKk = Peso asignado al grupo k, con la restriccion de 0 <=Wk <=1y Wk =1.

Cada proceso tiene asignada una prioridad de base. Esta prioridad desciende a medida que el proc
y el grupo al que pertenece utilizan la CPU. En el caso de la utilizacion del grupo, la media se
normaliza dividiendo por el peso del grupo. Cuanto mayor es el peso asignado al grupo, menos afec
su utilizacion a la prioridad.

Planificacién con multiples colas fijas

Este algoritmo pertenece a una clase de algoritmos de planificacion para situaciones en las que es f
clasificar los procesos en diferentes grupos.

Un algoritmo de planificacién con colas de mdltiples nivel divide la cola de procesos listos en varias
colas distintas. Los procesos se asighan permanentemente a una cola, casi siempre con base en al
propiedad del proceso, como ser tamafio de memoria, prioridad y tipo de proceso. Cada cola tiene s
propio algoritmo de planificacion.

Ademas debe haber planificacion entre las colas, lo cual por lo regular se implementa como una
planificacion expropiativa de prioridades fijas. Por ejemplo, la cola de primer plano podria tener
prioridad absoluta sobre la cola de segundo plano, por lo tanto mientras no se vacia la cola de
prioridad superior, los procesos de la cola inferior no se ejecutan.

Otra posibilidad es dividir el tiempo entre las colas. Cada cola obtiene cierta proporcién del tiempo d
CPU, que entonces puede repartir entre los diversos procesos en su cola.

Este algoritmo tiene la ventaja de que el gasto por planificacion es bajo y la desventaja de ser
inflexible.

Planificacion con multiples colas dindmicas
Es idéntico al anterior con la diferencia que los procesos se pueden mover de una cola a otra cola.
El planificador se configura usando algunos de los siguientes criterios:

¢ Numero de colas
¢ Algoritmo de planificacion para cada cola.
¢ Método o criterio para subir / bajar un proceso.
¢ Criterio para determinar en qué cola se pone inicialmente a un proceso.
¢ Es muy apropiado para esquemas client — server.
Evaluacién de algoritmos

La seleccién del algoritmo de planificacion adecuado comienza por definir los criterios que se
utilizaran y ordenarlos de acuerdo al perfil buscado. Una vez definido esto el siguiente paso es evall
los diversos algoritmos que se estén considerando. Existen varios métodos de evaluacion, que se
describiran en las secciones siguientes.

Modelos deterministicos

11

Una clase importante de métodos de evaluacion se denomina evaluacion analitica. Estos métodos
utilizan el algoritmo dado y la carga de trabajo del sistema para producir una formula o nimero que
califica el desemperio del algoritmo para esa carga de trabajo.

Un tipo de evaluacién analitica es el modelo determinista. Este modelo es simple y rapido. Da una
vision precisa permitiendo comparar los algoritmos. Sin embargo, como entrada requiere nimeros
exactos y sus resultados se aplican sélo a esos casos, por lo que es demasiado especifico para res
Gtil en la mayoria de los casos.

Los diagramas de Gantt de los distintos algoritmos nos permiten hacer un analisis del desempefio d
cada uno viendo el tiempo en que finalizan la ejecucién.

Modelo de colas

En muchos sistemas, los trabajos que se ejecutan varian diariamente, por lo que no hay un conjuntc
estatico de trabajos (y de tiempos) como para utilizar un modelo deterministico. Sin embargo lo que
puede determinarse es la distribucion de las rafagas de CPU y de E/S. Sobre esta distribucién pued
tomarse datos y luego aproximarla o simplemente estimarla. El resultado es una formula matematic:
gue describe la probabilidad de una rafaga de CPU concreta. Corrientemente se trata de una
distribucién exponencial, que puede describirse en términos de su media. Asimismo, debe darse la
distribucion de los tiempos en que los procesos llegan al sistema. A partir de estas dos distribucione
es posible calcular el rendimiento promedio, el aprovechamiento, el tiempo de espera y demas para
mayor parte de los algoritmos.

El sistema de computacién puede describirse como una red de servidores. Cada servidor tiene una
cola de espera. La CPU es un servidor con su cola de listos, asi como el sistema de E/S lo es de su
cola de dispositivos. Si conocemos los ritmos de llegada y de servicio, podemos calcular la
utilizacion, la longitud media de la cola, el tiempo de espera medio, etc. Esta area de estudio recibe
nombre de analisis de redes de colas.

Ahora se hara uso de férmulas basicas de la teoria de colas para poder estudiar los diferentes
algoritmos, para ello haremos la suposicién de que las llegadas siguen una Poisson y los tiempos dk
servicio una funcién exponencial.

En primer lugar, hay que observar que cualquier disciplina de planificacion que elija el siguiente
elemento a servir independientemente del tiempo de servicio cumple la siguiente relacion:

Tr/Ts=1/(1-)
Donde:
Tr = Tiempo de retorno o tiempo de estancia; tiempo total en el sistema, espera mas ejecucion.
Ts = Tiempo medio de servicio; tiempo medio consumido en el estado de ejecucion.
= Utilizacién del procesador.
Mas concretamente, un planificador basado en prioridades, en el que la prioridad de cada proceso s
asigna independientemente del tiempo esperado de servicio, proporciona el mismo tiempo medio de

retorno y tiempo medio de retorno normalizado que un simple FCFS. Es mas, la presencia o ausenc
de apropiacion no marca diferencia entre las medias.

12

De las diversas disciplinas de planificacién vistas hasta ahora, gran parte de ellas hacen elecciones
funcién del tiempo esperado de servicio. Por desgracia, resulta bastante dificil construir modelos
analiticos fiables para estas disciplinas. Sin embargo, es posible hacerse una idea del rendimiento
relativo de dichos algoritmos de planificacion en comparaciéon con el FCFS, considerando una
planificacion por prioridades donde la prioridad esta en funcién del tiempo de servicio.

Si la planificacién se hace en funcion de prioridades y si los procesos se asignan a una clase de
prioridad segln su tiempo de servicio, entonces aparecen diferencias.

Formulas para colas de dos prioridades con un solo servidor:
Suposiciones:

La llegada sigue una Poisson.

Los elementos de prioridad 1 se sirven antes que los de prioridad 2.
Los elementos de igual prioridad se expiden segun FIFO.

Los elementos no son interrumpidos durante el servicio.

Ningun elemento abandona la cola (se retrasan las pérdidas).

Formulas generales

= +

Tsl;, = Ts2
= +
Ts=(/)Ts1l+(/)Ts2
Tr=(/)Trl+ (/) Tr2
(=tasa de llegada)
Sin interrupciones; tiempo de servicio exponencial
Trl=Tsl+(Tsl+ Ts2)/(1-)
Tr2=Ts2+ (Trl-Ts1)/(1-)
Disciplina de colas de reanudacion preferente; tiempo de servicio exponencial
Tri=1+ Ts1/(1-)
Tr2=1+1/(1Q-))(Tsl+ Ts/(1-))
Nétese que las férmulas son diferentes para la planificacion no preferente y preferente. En el Gltimo
caso, se supone que un proceso de menor prioridad es interrumpido inmediatamente cuando uno de
mayor prioridad esta listo.

Modelos de simulacién

Se utilizan si se busca obtener una evaluacion mas exacta de los algoritmos de planificacion. Una

13

simulacién implica programar un modelo del sistema de computacién. Estructuras de datos en
software representan los principales componentes del sistema. El simulador tiene una variable que
representa un reloj; cuando se incrementa el valor de esta variable, el simulador modifica el estado
sistema de modo que refleje las actividades de los dispositivos, los procesos y el planificador.
Conforme se ejecuta la simulacion, se recopilan e imprimen datos estadisticos que indican el
desempefio del algoritmo.

Las simulaciones pueden ser costosas, y a menudo requieren horas de tiempo de computador.
Finalmente, el disefio, codificacién y depuracién del simulador no es una tarea trivial.

Implementacién

Incluso las simulaciones tienen una exactitud limitada. La Unica forma exacta de evaluar un algoritm
de planificacién es codificarlo, colocarlo en el sistema operativo, y ver cémo funciona.

El principal problema de este enfoque es el costo, ya que ademas de los gastos de codificacion,
adaptacion del sistema operativo para que lo soporte, etc. existira una reaccion adversa de los
usuarios, ya que estos no quieren el mejor sistema, sino que quieren que SUs Procesos se ejecuten
obtener sus resultados. El otro problema de cualquier evaluacion de algoritmos es que el entorno er
gue se usa el algoritmo cambiara. El cambio no sera solo normal, a medida que se escriben nuevos
programas y los tipos de problemas cambian, sino también el causado por el desempefio del
planificador. Si se da prioridad a los procesos cortos, los usuarios tal vez dividan sus procesos gran
en grupos de pequefios procesos. Si se da prioridad a los procesos interactivos sobre los no
interactivos, los usuarios podrian cambiar al uso interactivo.

Bibliografia

Sistemas Operativos — William Stallings

Notas Sobre Sistemas Operativos — Carlos Neetzel
Operating System Concepts — Silberschatz Galvin

Sistemas Operativos — Andrew S. Tanembaum

14

