
CALIBRADO DE UN TERMOPAR: CURVA DE ENFRIAMIENTO

DE UN CUERPO CON UNA TRANSICIÓN DE PRIMER ORDEN

1. Introducción:

El objetivo de esta práctica consiste en calibrar correctamente un termopar, basándonos en la relación
existente, a temperatura ambiente, entre la resistencia del termopar y la temperatura; cuya relación lineal viene
dada por la fórmula:
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Por otra parte sabemos que cuando un cuerpo homogéneo se enfría a temperatura constante (
2), se establece que la temperatura varía según la siguiente ley:
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Esta ley no se cumple mientras el sistema cambia de fase. En dicho intervalo, la temperatura se hará constante
hasta que la transición se complete. Veremos como dicho efecto se refleja perfectamente en la gráfica
obtenida experimentalmente.

2. Desarrollo de la práctica.

En un primer lugar tomamos el valor de la temperatura ambiente, la presión así como la tensión a dicha
temperatura. Para averiguar las constantes A y B para la calibración del termopar procedimos del siguiente
modo: preparamos el punto cero con agua e hielo en un vaso Dewar e introdujimos en él la soldadura de
referencia; una vez estabilizada la temperatura medimos el valor de la tensión. Ésta será un punto fijo de
referencia.

Seguidamente procedimos a calentar agua hasta 100°C y pusimos en contacto con el vapor de agua la sonda
termométrica, esperamos a que se estabilizase y tomamos el valor de la tensión. Éste será un segundo punto de
referencia.

Por último dejamos enfriar la sonda termométrica a temperatura ambiente y procedimos a medir la tensión del
termopar cada 15 segundos durante unos 15 minutos. Estos datos nos servirán para comprobar la ley de
enfriamiento de un cuerpo, así como verificar que existe una transición de primer orden.

3. Tablas y resultados:

Temperatura ambiente: 24.0±0.1 °C

Presión atmosférica: 769.3±0.1 mmHg.

Tensión a temperatura ambiente: 1.29±0.01 mV.

Tensión a 0°C: 0.00±0.01 mV.
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Tensión a 100 °C: 6.29±0.01 mV.

En primer lugar procederemos a la corrección del valor de la presión atmosférico; vemos en la tabla como el
valor de nuestra presión está comprendida entre 760 y 770 mmHg, así que nuestro valor de la presión es:
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Vemos como el error de Z es despreciable frente al error de la presión atmosférica, finalmente tenemos:

Presión atmosférica: 766.3±0.1 mmHg.

Temperatura de ebullición: 100.231 °C

El siguiente paso será averiguar las constantes A y B de la fórmula 
7 para tener así calibrado el termopar. podemos formar un sistema de ecuaciones con los datos que tenemos de
calibración, que son los siguientes:

8=273.1±0.1 K

V0=0 mV

9=373.3±0.1 K

V100=(629±1)"10−5 V.

Así en el sistema de ecuaciones las dos incógnitas son A y B, que una vez resulto arrojan los siguientes
resultados con su error correspondiente:
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0=A+B"273.1

629"10−5=A+B"373.3

%%%%%%%%%%%%%%%%%%%
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Seguidamente procedemos a calcular A:

0=A+(628±2)"10−7"(273.1±0.1)

A=(−170±1)"10−4 V.
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Por tanto, y según estos valores el termopar queda calibrado de la siguiente manera:
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Con los datos de calibración podemos calcular el valor que le corresponde a 
19 para cada tiempo, y así poder calcular 

20.
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Despejando de la ecuación 
21 obtenemos: 

22. Seguidamente se muestran los datos en una tabla:

T (s.) V ("10−5v.)
23 (K.) 24 (K.)

15 560±1 359.9±1.2 4.14

30 530±1 355.1±1.1 4.06

45 508±1 351.6±1.1 4.00

60 494±1 349.4±1.1 3.96

75 480±1 347.3±1.1 3.91

90 467±1 345.1±1.1 3.87

105 456±1 343.2±1.1 3.83

120 443±1 341.2±1.1 3.79

135 431±1 339.3±1.1 3.74

150 421±1 337.7±1.1 3.70

165 410±1 336.0±1.1 3.66

180 402±1 334.7±1.1 3.63

195 393±1 333.3±1.1 3.59

210 388±1 332.5±1.1 3.57

225 387±1 332.3±1.1 3.56

240 387±1 332.3±1.1 3.56

255 387±1 332.3±1.1 3.56

270 387±1 332.3±1.1 3.56

285 387±1 332.3±1.1 3.56

300 387±1 332.3±1.1 3.56

315 385±1 332.0±1.1 3.55

330 382±1 331.5±1.1 3.54

345 377±1 330.7±1.1 3.52

360 375±1 330.4±1.1 3.51

375 367±1 329.1±1.1 3.47

390 359±1 327.9±1.1 3.43

405 351±1 326.6±1.0 3.38

420 344±1 325.5±1.0 3.35

435 338±1 324.5±1.0 3.31

450 331±1 323.4±1.0 3.27

465 323±1 322.1±1.0 3.22

480 317±1 321.2±1.0 3.18

495 310±1 320.1±1.0 3.14

510 304±1 319.1±1.0 3.09

525 299±1 318.3±1.0 3.05

540 293±1 317.4±1.0 3.01

555 289±1 316.7±1.0 2.98
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570 283±1 315.8±1.0 2.93

585 278±1 315.0±1.0 2.88

600 273±1 314.2±1.0 2.84

615 268±1 313.4±1.0 2.79

630 264±1 312.7±1.0 2.75

645 260±1 312.1±1.0 2.71

660 255±1 311.3±1.0 2.65

675 251±1 310.7±1.0 2.61

690 247±1 310.0±1.0 2.56

705 243±1 309.4±1.0 2.51

720 240±1 309.0±1.0 2.47

735 236±1 308.3±1.0 2.41

750 233±1 307.8±1.0 2.37

765 230±1 307.3±1.0 2.33

780 227±1 306.9±1.0 2.28

795 224±1 306.4±1.0 2.23

810 221±1 305.9±1.0 2.17

825 219±1 305.6±1.0 2.14

840 216±1 305.1±1.0 2.08

855 214±1 304.8±1.0 2.04

870 212±1 304.5±1.0 2.00

885 210±1 304.1±1.0 1.95

900 208±1 303.8±1.0 1.91

A continuación, representamos 

25 frente al tiempo y analizamos los resultados:
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Para una mayor exactitud también se ha realizado la gráfica en papel milimetrado.

En esta gráfica vemos tres partes bien diferenciadas con la notoriedad de que existe un tramo en el cual no
tenemos dependencia del tiempo; es decir, es horizontal, lo que nos demuestra que en dicho período se
produce un cambio de fase y por tanto la ley de enfriamiento de Newton no tiene validez. En cambio, existen
dos tramos que muestran una dependencia entre 

26 y el tiempo. En dichos tramos la ley de Newton si es aplicable y demostraremos su validez. Resumiendo
podemos decir que esta gráfica representa una curva de enfriamiento que responde a la ley de Newton, pero
nos encontramos con una transición o cambio de fase durante un intervalo de tiempo concreto donde la ley de
Newton no es válida. Una vez transcurrido el período de la transición, la recta vuelve a verificar la ley de
Newton mencionada anteriormente.

Para demostrar la dependencia entre la gráfica obtenida y la ley de Newton, tomaremos sobre ésta logaritmos
neperianos, quedando de la siguiente manera:

27

Expresión ésta última totalmente análoga a y=A+Bt; ya que tenemos 
28 como la temperatura ambiente y 
29 como la temperatura que le corresponde a cada valor de la tensión, calculada mediante los datos de
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calibración del termopar. Por otra parte podemos llamar 

30. Solamente nos queda calcular los valores de A y B, y así poder obtener C y tau, para ello utilizaremos el
método de regresión lineal.

Como tenemos dos rectas, una antes y otra después de la transición, cada una de ellas puede tener valores
distintos para ln C y 

31, pero en este caso veremos que los valores están muy próximos.

El primer tramo corresponde a los primeros trece puntos; es decir, desde el 4.14 hasta el 3.59; donde
obtenemos:

A=ln C= (415±1)"10−2; 

32

Para calcular el error de C, tenemos que el error relativo de una potencia es el producto del exponente por el
error relativo de la base, entonces si tomamos el número e con un gran número de cifras decimales su error es
despreciable.

B=

33= (−293±8)"10−5

El valor de tau viene dado por 1/B:

34
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r= −0.996

El segundo tramo corresponde a los valores desde el punto 23 hasta el punto 60, es decir, desde 3.52 hasta el
1.91; obteniéndose los siguientes resultados.

A=ln C= (461±1)"10−2; 
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De forma análoga al caso anterior, el error de este valor es despreciable.

B=

37= (−298±2)"10−5
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El valor de tau para este tramo es el siguiente:

38

39

r= −0.9994

A pesar de existir dos tramos diferentes que se rigen por la ley de Newton sobre el enfriamiento, los valores
de las constantes para los dos tramos son muy parecidos, lo que quiere decir que tanto antes como después de
la transición, la curva de enfriamiento tiene la misma tendencia.

Para obtener la ley de Newton partimos de:
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Tenemos una paso de calor desde 
41 hasta 
42.
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