
Relaciones Termodinámicas II

Partimos de la definición de cambio de entropia de un fluido (E.1) y de la definición de entalpia (E.2):

(E.1)

(E.2)

Definiremos dos variables termodinámicas de alta utilidad, llamadas energías libres de Gibbs (E.3) y
Helmholtz (E.4):

(E.3)

(E.4)

De la primer expresión se despeja la variación en la energía interna y obtenemos:

(E.5)

Diferenciando las expresiones (E.2), (E.3) y (E.4) y sustituyendo (E.5) tenemos:

(E.6)

(E.7)

(E.8)

Recordando que las propiedades termodinámicas (U,H,G y A) son variables de estado, entonces, se pueden
escribir como diferenciales exactas en la forma:

(E.9)

Haciendo una comparación de (E.7) y de (E.9) tenemos:
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(E.10)

(E.11)

Sabemos que para una ecuación diferencial exacta:

(E.11)

Esto equivale a, la relación de Maxwell para energía libre de Gibbs :

(E.12)

Haciendo lo mismo para la energía libre de Helmholtz tenemos:

(E.13)

Comparándola con la ecuación (E.8) Tenemos

(E.14)

(E.15)

Aplicando las derivadas cruzadas tenemos la relación de Maxwell para la energía de Helmholtz:

(E.16)

El objetivo de estas relaciones termodinámicas es expresar, las energías Interna y de entalpia, en función de
variables medibles.
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Para la entalpia se buscará una expresión matemática que permita su cálculo en función de variables de fácil
medición (i.e. Temperatura y presión).

H = H(T,P) (E.17)

(E.18)

De la expresión (E.6) 
, podemos obtener la variación de la entalpia con la presión, manteniendo la temperatura constante:

(E.19)

Sustituimos (E.12) en (E.19) y tenemos:

(E.20)

Por último se sustituye (E.20) en (E.18) para dar:

(E.21)

Incorporamos la definición de Capacidad calorífica a presión constante (i.e. Cp) en la expresión anterior
tenemos:

(E.22)

El mismo procedimiento se hará para la energía interna, encontrando una expresión en función de variables
medibles (T y V) de la forma:

U=U(T,V) (E.23)

(E.23)

De la ecuación (E.5) se obtendrá la derivada parcial de la energía interna respecto al volumen manteniendo la
temperatura constante: 
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, quedando:

(E.24)

Sustituyendo la relación de Maxwell para la energía de Helmholtz (E.16) en la expresión (E.24) tenemos:

(E.25)

Sustituimos la expresión (E.25) en la (E.23) e incorporamos la definición de capacidad calorífica a volumen
constante (Cv) en la expresión, nos queda:

(E.26)

Estas expresiones las daremos por unidad de masa, adicionalmente daremos expresiones de entropia
sustituyendo las ecuaciones anteriores en las expresiones (E.1) y (E.6), quedando en la forma:

(E.27)

(E.28)

(E.29)

(E.30)

Estas expresiones, son bastante útiles y serán usadas para determinar energía interna y entalpia,
adicionalmente haremos un desarrollo de esas expresiones para casos especiales:

CASO I (GAS IDEAL) 

(E.31)
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y 

Si utilizamos la ecuación de gas ideal para simplificar las ecuaciones (E.27), (E.28), (E.29), (E.30) tenemos lo
siguiente:

(E.27.I)

(E.28.I)

(E.29.I)

(E.30.I)

Si sustituimos la expresión (E.27.I), (E.28.I) y (E.31) en la ecuación (E.2) escrita en forma diferencial
tenemos:

, encontramos que para una gas ideal:

(E.32)

Las expresiones anteriores pueden integrarse para dar:

(E.27.I)

(E.28.I)

(E.29.I)
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(E.30.I)

Donde deberá cumplirse siempre :

CASO II (Líquidos y Sólidos incompresibles)

(E.32)

y 

Entonces tenemos:

(E.27.II)

(E.28.II)

(E.29.II)

(E.30.II)

De lo que concluimos que para un líquido y un sólido incompresibles Cp=Cv.
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