INTRODUCCION

A finales de los 40's el uso de computadoras estaba restringido a aquellas empresas o instituciones que po
pagar su alto precio, y no existian los sistemas operativos. En su lugar, el programador debia tener un
conocimiento y contacto profundo con el hardware, y en el infortunado caso de que su programa fallara, del
examinar los valores de los registros y paneles de luces indicadoras del estado de la computadora para
determinar la causa del fallo y poder corregir su programa, ademas de enfrentarse nuevamente a los
procedimientos de apartar tiempo del sistema y poner a punto los compiladores, ligadores, etc; para volver
correr su programa, es decir, enfrentaba el problema del procesamiento serial (serial processing) [Stal92].

Programacion

Tarjetas Calendarizacion
Lunes Martes | Mierco | Jueves | Viernes

v v

v v v .
+ Impresion

YO v v v i

v v v — Error

v v

Figura 1. Ciclo de Programacion primera generacion de computadoras

La importancia de los sistemas operativos nace histéricamente desde los 50's, cuando se hizo evidente que
operar una computadora por medio de tableros enchufables en la primera generacion y luego por medio de
trabajo en lote en la segunda generacion se podia mejorar notoriamente, pues el operador realizaba siemp!
una secuencia de pasos repetitivos, lo cual es una de las caracteristicas contempladas en la definicion de I
gue es un programa. Es decir, se comenzd a ver que las tareas mismas del operador podian plasmarse en
programa, el cual a través del tiempo y por su enorme complejidad se le llamé "Sistema Operativo". Asi,
tenemos entre los primeros sistemas operativos al Fortran Monitor System (FMS) e IBSYS [Tan92].

Posteriormente, en la tercera generacion de computadoras nace uno de los primeros sistemas operativos ¢
filosofia de administrar una familia de computadoras: el OS/360 de IBM. Fue este un proyecto tan hovedost
ambicioso que enfrentd por primera vez una serie de problemas conflictivos debido a que anteriormente las
computadoras eran creadas para dos propositos en general: el comercial y el cientifico. Asi, al tratar de cre
un solo sistema operativo para computadoras que podian dedicarse a un propdsito, al otro 0 ambos, puso €
evidencia la problematica del trabajo en equipos de analisis, disefio e implantacion de sistemas grandes. El
resultado fue un sistema del cual uno de sus mismos disefiadores patentizo su opinion en la portada de un
libro: una horda de bestias prehistéricas atascadas en un foso de brea.

Surge también en la tercera generacién de computadoras el concepto de la multiprogramacion, porque deb
al alto costo de las computadoras era necesario idear un esquema de trabajo que mantuviese a la unidad
central de procesamiento mas tiempo ocupada, asi como el encolado (spooling) de trabajos para su lectur:
hacia los lugares libres de memoria o la escritura de resultados. Sin embargo, se puede afirmar que los
sistemas durante la tercera generacién siguieron siendo basicamente sistemas de lote.

En la cuarta generacién la electrénica avanza hacia la integracion a gran escala, pudiendo crear circuitos c
miles de transistores en un centimetro cuadrado de silicon y ya es posible hablar de las computadoras
personales y las estaciones de trabajo. Surgen los conceptos de interfaces amigables intentando asi atraer

publico en general al uso de las computadoras como herramientas cotidianas. Se hacen populares el MS-L
y UNIX en estas maquinas. También es comun encontrar clones de computadoras personales y una multit
de empresas pequefias ensamblandolas por todo el mundo.

Para mediados de los 80's, comienza el auge de las redes de computadoras y la necesidad de sistemas
operativos en red y sistemas operativos distribuidos. La red mundial Internet se va haciendo accesible a toc
clase de instituciones y se comienzan a dar muchas soluciones (y problemas) al querer hacer convivir
recursos residentes en computadoras con sistemas operativos diferentes. Para los 90's el paradigma de la
programacion orientada a objetos cobra auge, asi como el manejo de objetos desde los sistemas operativo
Las aplicaciones intentan crearse para ser ejecutadas en una plataforma especifica y poder ver sus resulta
en la pantalla o monitor de otra diferente (por ejemplo, ejecutar una simulaciéon en una maquina con UNIX 'y
ver los resultados en otra con DOS). Los niveles de interaccion se van haciendo cada vez mas profundos.

TIPOS DE SISTEMAS
S,

OPERATIVOS

En esta seccidn se describiran las caracteristicas que clasifican a los sistemas operativos, basicamente se
cubriran tres clasificaciones: sistemas operativos por su estructura (vision interna), sistemas operativos por
servicios que ofrecen y, finalmente, sistemas operativos por la forma en que ofrecen sus servicios (vision
externa).

2.1 Sistemas Operativos por su Estructura

Segun [Alcal92], se deben observar dos tipos de requisitos cuando se construye un sistema operativo, los
cuales son:

Requisitos de usuario: Sistema facil de usar y de aprender, seguro, rapido y adecuado al uso al que se le g
destinar.

Requisitos del software: Donde se engloban aspectos como el mantenimiento, forma de operacion,
restricciones de uso, eficiencia, tolerancia frente a los errores y flexibilidad.

A continuacion se describen las distintas estructuras que presentan los actuales sistemas operativos para
satisfacer las necesidades que de ellos se quieren obtener.

2.1.1 Estructura monolitica.
Es la estructura de los primeros sistemas operativos constituidos fundamentalmente por un solo programa
compuesto de un conjunto de rutinas entrelazadas de tal forma que cada una puede llamar a cualquier otra

(Ver Fig. 2). Las caracteristicas fundamentales de este tipo de estructura son:

Construccion del programa final a base de médulos compilados separadamente que se unen a través del
ligador.

Buena definicién de parametros de enlace entre las distintas rutinas existentes, que puede provocar mucho
acoplamiento.

Carecen de protecciones y privilegios al entrar a rutinas que manejan diferentes aspectos de los recursos d
computadora, como memoria, disco, etc.

Generalmente estan hechos a medida, por lo que son eficientes y rapidos en su ejecucion y gestion, pero p

mismo carecen de flexibilidad para soportar diferentes ambientes de trabajo o tipos de aplicaciones.

modulo o |[<4—#| modulo d

modulo b modulo e

modulo f

Figura 2. Estructura Monolitica

2.1.2 Estructura jerarquica.

A medida que fueron creciendo las necesidades de los usuarios y se perfeccionaron los sistemas, se hizo
necesaria una mayor organizacion del software, del sistema operativo, donde una parte del sistema conten|
subpartes y esto organizado en forma de niveles.

Se dividio el sistema operativo en pequefas partes, de tal forma que cada una de ellas estuviera perfectam
definida y con un claro interface con el resto de elementos.

Se constituyd una estructura jerarquica o de niveles en los sistemas operativos, el primero de los cuales fue
denominado THE (Technische Hogeschool, Eindhoven), de Dijkstra, que se utilizé con fines didacticos (Ver
Fig. 3). Se puede pensar también en estos sistemas como si fueran ‘multicapa’. Multics y Unix caen en esa
categoria. [Feld93].

Capa 5 - Usuario

Capa 4 - Archivos

Capa 3 - Entrada/Salida
Capa 2 - Comunicaciones
Capa 1 - Memoria

Capa 0 - Gestion CPU
Capa 1 - Hardware

Figura 3. Sistema jerarquico THE

En la estructura anterior se basan practicamente la mayoria de los sistemas operativos actuales. Otra form:
ver este tipo de sistema es la denominada de anillos concéntricos o "rings" (Ver Fig. 4).

Intérprete
de
Comandos

Aplicacion
de
Usuario

Gestion de Informacidn

r—""-'—_-"‘“_
Gestidn de mermaoric

T
Gestion de EfS

Gestidn
de
CPU

Figura 4. Organizacion jerarquica (anillos)

En el sistema de anillos, cada uno tiene una apertura, conocida como puerta o trampa (trap), por donde pu
entrar las llamadas de las capas inferiores. De esta forma, las zonas mas internas del sistema operativo o
nucleo del sistema estaran mas protegidas de accesos indeseados desde las capas mas externas. Las cap
internas seran, por tanto, mas privilegiadas que las externas.

2.1.3 Maquina Virtual.

Se trata de un tipo de sistemas operativos que presentan una interface a cada proceso, mostrando una ma
gue parece idéntica a la maquina real subyacente. Estos sistemas operativos separan dos conceptos que S
estar unidos en el resto de sistemas: la multiprogramacion y la maquina extendida. El objetivo de los sisten
operativos de maquina virtual es el de integrar distintos sistemas operativos dando la sensacién de ser vari
maquinas diferentes.

El nucleo de estos sistemas operativos se denomina monitor virtual y tiene como mision llevar a cabo la
multiprogramacion, presentando a los niveles superiores tantas maquinas virtuales como se soliciten. Estas
maquinas virtuales no son maquinas extendidas, sino una réplica de la maquina real, de manera que en cal
una de ellas se pueda ejecutar un sistema operativo diferente, que seré el que ofrezca la maquina extendid
usuario (Ver Fig. 5).

Un
Usuario

Un
Usuario

Hardware [Hoardware
Virtual Virtual

Un
Usuario

Hardware

Figura 5. M aquina Vitual

2.1.4 Cliente—servidor (Microkernel)

El tipo mas reciente de sistemas operativos es el denominado Cliente—servidor, que puede ser ejecutado el
mayoria de las computadoras, ya sean grandes o pequefias.

Este sistema sirve para toda clase de aplicaciones por tanto, es de propdésito general y cumple con las misr
actividades gue los sistemas operativos convencionales.

El nicleo tiene como mision establecer la comunicacion entre los clientes y los servidores. Los procesos
pueden ser tanto servidores como clientes. Por ejemplo, un programa de aplicacién normal es un cliente qu
llama al servidor correspondiente para acceder a un archivo o realizar una operacion de entrada/salida sobi
un dispositivo concreto. A su vez, un proceso cliente puede actuar como servidor para otro." [Alcal92]. Este
paradigma ofrece gran flexibilidad en cuanto a los servicios posibles en el sistema final, ya que el ntcleo
provee solamente funciones muy basicas de memoria, entrada/salida, archivos y procesos, dejando a los
servidores proveer la mayoria que el usuario final o programador puede usar. Estos servidores deben tener
mecanismos de seguridad y proteccion que, a su vez, seran filtrados por el nacleo que controla el hardware
Actualmente se esta trabajando en una version de UNIX que contempla en su disefo este paradigma.

2.2 Sistemas Operativos por Servicios

Esta clasificacion es la mas comunmente usada y conocida desde el punto de vista del usuario final. Esta
clasificacion se comprende facilmente con el cuadro sindptico que a continuacién se muestra en la Fig. 6.

Monousuarios
Porelndmero

de usuarios Multiusuarios

Sistemas Operativos | porelnimero Monotareas

por Servicios de tareas .
Multtareas

Uniproceso

Por elndmero Simétricos
de procesadores | Multiproceso

Asimétricos

Figura 6. Sistemas Operctivos por Servicios

2.2.1 Monousuarios

Los sistemas operativos monousuarios son aquéllos que soportan a un usuario a la vez, sin importar el nan
de procesadores que tenga la computadora o el nimero de procesos o tareas que el usuario pueda ejecuta
un mismo instante de tiempo. Las computadoras personales tipicamente se han clasificado en este renglon

2.2.2 Multiusuarios

Los sistemas operativos multiusuarios son capaces de dar servicio a mas de un usuario a la vez, ya sea po
medio de varias terminales conectadas a la computadora o por medio de sesiones remotas en una red de
comunicaciones. No importa el nimero de procesadores en la maquina ni el nUmero de procesos que cada
usuario puede ejecutar simultaneamente.

2.2.3 Monotareas

Los sistemas monotarea son aquellos que so6lo permiten una tarea a la vez por usuario. Puede darse el cas
un sistema multiusuario y monotarea, en el cual se admiten varios usuarios al mismo tiempo pero cada uno
ellos puede estar haciendo solo una tarea a la vez.

2.2.4 Multitareas

Un sistema operativo multitarea es aquél que le permite al usuario estar realizando varias labores al mismo

tiempo. Por ejemplo, puede estar editando el codigo fuente de un programa durante su depuracion mientra:
compila otro programa, a la vez que esté recibiendo correo electrénico en un proceso en background. Es

comun encontrar en ellos interfaces gréaficas orientadas al uso de menus y el ratén, lo cual permite un rapid
intercambio entre las tareas para el usuario, mejorando su productividad.

2.2.5 Uniproceso

Un sistema operativo uniproceso es aquél que es capaz de manejar solamente un procesador de la
computadora, de manera que si la computadora tuviese mas de uno le seria intil. El ejemplo mas tipico de
este tipo de sistemas es el DOS y MacOS.

2.2.6 Multiproceso

Un sistema operativo multiproceso se refiere al nimero de procesadores del sistema, que es mas de uno y
es capaz de usarlos todos para distribuir su carga de trabajo. Generalmente estos sistemas trabajan de dos
formas: simétrica o asimétricamente. Cuando se trabaja de manera asimétrica, el sistema operativo selecci
a uno de los procesadores el cual jugara el papel de procesador maestro y servird como pivote para distrib
la carga a los demas procesadores, que reciben el nombre de esclavos. Cuando se trabaja de manera simée
los procesos o partes de ellos (threads) son enviados indistintamente a cualesquira de los procesadores
disponibles, teniendo, teéricamente, una mejor distribucién y equilibrio en la carga de trabajo bajo este
esquema.

Se dice que un thread es la parte activa en memoria y corriendo de un proceso, lo cual puede consistir de L
area de memoria, un conjunto de registros con valores especificos, la pila y otros valores de contexto. Us
aspecto importante a considerar en estos sistemas es la forma de crear aplicaciones para aprovechar los v
procesadores. Existen aplicaciones que fueron hechas para correr en sistemas monoproceso gque no tomar
ninguna ventaja a menos que el sistema operativo o el compilador detecte secciones de cddigo paralelizabl
los cuales son ejecutados al mismo tiempo en procesadores diferentes. Por otro lado, el programador pued
modificar sus algoritmos y aprovechar por si mismo esta facilidad, pero esta Ultima opcién las mas de las
veces es costosa en horas hombre y muy tediosa, obligando al programador a ocupar tanto 0 mas tiempo &
paralelizacion que a elaborar el algoritmo inicial.

2.3. Sistemas Operativos por la Forma de Ofrecer sus Servicios

Esta clasificacion también se refiere a una visidn externa, que en este caso se refiere a la del usuario, el c6
accesa los servicios. Bajo esta clasificacion se pueden detectar dos tipos principales: sistemas operativos ¢
red y sistemas operativos distribuidos.

2.3.1 Sistemas Operativos de Red

Los sistemas operativos de red se definen como aquellos que tiene la capacidad de interactuar con sisteme
operativos en otras computadoras por medio de un medio de transmision con el objeto de intercambiar
informacion, transferir archivos, ejecutar comandos remotos y un sin fin de otras actividades. El punto cruci
de estos sistemas es que el usuario debe saber la sintaxis de un cinjunto de comandos o llamadas al sister
para ejecutar estas operaciones, ademas de la ubicacion de los recursos que desee accesar. Por ejemplo,
usuario en la computadora hidalgo necesita el archivo matriz.pas que se localiza en el directorio
/software/codigo en la computadora morelos bajo el sistema operativo UNIX, dicho usuario podria copiarlo
través de la red con los comandos siguientes: hidalgo% hidalgo% rcp morelos:/software/codigo/matriz.pas .
hidalgo% En este caso, el comando rcp que significa "remote copy" trae el archivo indicado de la
computadora morelos y lo coloca en el directorio donde se ejecut6é el mencionado comando. Lo importante
hacer ver que el usuario puede accesar y compartir muchos recursos.

2.3.2 Sistemas Operativos Distribuidos

Los sistemas operativos distribuidos abarcan los servicios de los de red, logrando integrar recursos (
impresoras, unidades de respaldo, memoria, procesos, unidades centrales de proceso) en una sola maqui
virtual que el usuario accesa en forma transparente. Es decir, ahora el usuario ya no necesita saber la
ubicacién de los recursos, sino que los conoce por nombre y simplementa los usa como si todos ellos fuese
locales a su lugar de trabajo habitual. Todo lo anterior es el marco tedrico de lo que se desearia tener comc
sistema operativo distribuido, pero en la realidad no se ha conseguido crear uno del todo, por la complejida
gue suponen: distribuir los procesos en las varias unidades de procesamiento, reintegrar sub-resultados,
resolver problemas de concurrencia y paralelismo, recuperarse de fallas de algunos recursos distribuidos y
consolidar la proteccién y seguridad entre los diferentes componentes del sistema y los usuarios. [Tan92]. L
avances tecnoldgicos en las redes de area local y la creacién de microprocesadores de 32 y 64 bits lograro
gue computadoras mas 0 menos baratas tuvieran el suficiente poder en forma autbnoma para desafiar en c
grado a los mainframes, y a la vez se dio la posibilidad de intercomunicarlas, sugiriendo la oportunidad de
partir procesos muy pesados en calculo en unidades mas pequefias y distribuirlas en los varios
microprocesadores para luego reunir los sub-resultados, creando asi una maquina virtual en la red que exc
en poder a un mainframe. El sistema integrador de los microprocesadores que hacer ver a las varias mema
procesadores, y todos los demas recursos como una sola entidad en forma transparente se le llama sistem
operativo distribuido. Las razones para crear o adoptar sistemas distribuidos se dan por dos razones
principales: por necesidad (debido a que los problemas a resolver son inherentemente distribuidos) o porc
se desea tener mas confiabilidad y disponibilidad de recursos. En el primer caso tenemos, por ejemplo, el
control de los cajeros automaticos en diferentes estados de la republica. Ahi no es posible ni eficiente
mantener un control centralizado, es mas, no existe capacidad de cémputo y de entrada/salida para dar
servicio a los millones de operaciones por minuto. En el segundo caso, supbngase que se tienen en una gr
empresa varios grupos de trabajo, cada uno necesita almacenar grandes cantidades de informacién en dis
duro con una alta confiabilidad y disponibilidad. La solucién puede ser que para cada grupo de trabajo se
asigne una particion de disco duro en servidores diferentes, de manera que si uno de los servidores falla, n
deje dar el servicio a todos, sino sélo a unos cuantos y, mas adn, se podria tener un sistema con discos en
espejo (mirror) a través de la red,de manera que si un servidor se cae, el servidor en espejo continla
trabajando y el usuario ni cuenta se da de estas fallas, es decir, obtiene acceso a recursos en forma
transparente.

2.3.2.1 Ventajas de los Sistemas Distribuidos

En general, los sistemas distribuidos (no solamente los sistemas operativos) exhiben algunas ventajas sob
los sistemas centralizados que se describen enseguida.

» Economia: El cociente precio/desempefio de la suma del poder de los procesadores separados con
el poder de uno solo centralizado es mejor cuando estan distribuidos.

 Velocidad: Relacionado con el punto anterior, la velocidad sumada es muy superior.

« Confiabilidad: Si una sola maquina falla, el sistema total sigue funcionando.

« Crecimiento: El poder total del sistema puede irse incrementando al afiadir pequefios sistemas, lo c
es mucho mas dificil en un sistema centralizado y caro.

« Distribucion: Algunas aplicaciones requieren de por si una distribucién fisica.

Por otro lado, los sistemas distribuidos también exhiben algunas ventajas sobre sistemas aislados. Estas
ventajas son:

» Compartir datos: Un sistema distribuido permite compartir datos mas facilmente que los sistemas
aislados, que tendrian que duplicarlos en cada nodo para lograrlo.

» Compartir dispositivos: Un sistema distribuido permite accesar dispositivos desde cualquier nodo en
forma transparente, lo cual es imposible con los sistemas aislados. El sistema distribuido logra un
efecto sinergético.

» Comunicaciones: La comunicacién persona a persona es factible en los sistemas distribuidos, en lo

sistemas aislados no. _ Flexibilidad: La distribucion de las cargas de trabajo es factible en el sistem:
distribuidos, se puede incrementar el poder de cémputo.

2.3.2.2 Desventajas de los Sistemas Distribuidos

Asi como los sistemas distribuidos exhiben grandes ventajas, también se pueden identificar algunas
desventajas, algunas de ellas tan serias que han frenado la produccién comercial de sistemas operativos el
actualidad. El problema mas importante en la creacién de sistemas distribuidos es el software: los problem:
de comparticion de datos y recursos es tan complejo que los mecanismos de solucion generan mucha
sobrecarga al sistema haciéndolo ineficiente. El checar, por ejemplo, quiénes tienen acceso a algunos recu
y quiénes no, el aplicar los mecanismos de proteccion y registro de permisos consume demasiados recursc
En general, las soluciones presentes para estos problemas estan adn en pafales.

Otros problemas de los sistemas operativos distribuidos surgen debido a la concurrencia y al paralelismo.
Tradicionalmente las aplicaiones son creadas para computadoras que ejecutan secuencialmente, de manel
que el identificar secciones de codigo “paralelizable' es un trabajo arduo, pero necesario para dividir un
proceso grande en sub-procesos y enviarlos a diferentes unidades de procesamiento para lograr la
distribucion. Con la concurrencia se deben implantar mecanismos para evitar las condiciones de competen
las postergaciones indefinidas, el ocupar un recurso y estar esperando otro, las condiciones de espera
circulares y , finalmente, los "abrazos mortales" (deadlocks). Estos problemas de por si se presentan en l0s
sistemas operativos multiusuarios o multitareas, y su tratamiento en los sistemas distribuidos es aiin mas
complejo, y por lo tanto, necesitara de algoritmos mas complejos con la inherente sobrecarga esperada.

NUCLEQOS DE SISTEMAS OPERATIVOS

Para comprender mejor qué diferencias existen entre ambas categorias, se necesita revisar algunos conce|
Trabajos, Procesos y Thread

EStos tres conceptos van definiendo el grado de granularidad en que el sistema operativo trata a las masas
operaciones que se tienen que realizar. Un trabajo se conceptualiza como un conjunto de uno 0 mas proce:
Por ejemplo, si se tiene que hacer el trabajo de correr el inventario, tal vez se subdivida ese trabajo en varic
procesos: obtener la lista de articulos, nUmero en existencia, articulos vendidos, articulos extraviados, etc. !
proceso se define como la imagen de un programa en ejecucion, es decir, en memoria y usando el CPU. A
nivel de granularidad, un proceso tiene un espacio de direcciones de memoria, una pila, sus registros y su

‘program counter'. Un thread es un trozo o seccién de un proceso gue tiene sus propios registros, pilay
‘program counter' y puede compartir la memoria con todos aquellos threads que forman parte del mismo
proceso.

Objetos

Un objeto es una entidad que contiene dos partes principales: una coleccién de atributos y un conjunto de
métodos (también llamados servicios). Generalmente los atributos del objeto no pueden ser cambiados por
usuario, sino solamente a través de los métodos. Los métodos si son accesibles al usuario y de hecho es Ic
anico que él observa: los métodos conforman lo que se llama la 'interfaz' del objeto. Por ejemplo, para el
objeto 'archivo' los métodos son abrir, cerrar, escribir, borrar, etc. El cdmo se abre, se cierra, se borra, etc; ¢
escondido para el usuario, es decir, los atributos y el cddigo estan 'encapsulados'. La Unica forma de activa
método es a través del envio de mensajes entre los objetos, o hacia un objeto.

Cliente — Servidor

Un cliente es un proceso que necesita de algin valor o de alguna operacién externa para poder trabajar. A
entidad que prove ese valor o realiza esa operacion se le llama servidor. Por ejemplo, un servidor de archiv
debe correr en el nucleo (kernel) o por medio de un proceso 'guardian’ al servidor de archivos que escucha
peticiones de apertura, lectura, escritura, etc; sobre los archivos. Un cliente es otro proceso guardian que
escucha esas peticiones en las maquinas clientes y se comunica con el proceso servidor a través de la red
dando la apariencia de que se tienen los archivos en forma local en la maquina cliente.

Nucleo Monolitico

Los nucleos monoliticos generalmente estan divididos en dos partes estructuradas: el nicleo dependiente ¢
hardware y el ndcleo independiente del hardware. El nicleo dependiente se encarga de manejar las
interrupciones del hardware, hacer el manejo de bajo nivel de memoria y discos y trabajar con los
manejadores de dispositivos de bajo nivel, principalmente. El nicleo independiente del hardware se encarg
de ofrecer las llamadas al sistema, manejar los sistemas de archivos y la planificacion de procesos. Para el
usuario esta divisiéon generalmente pasa desapercibida. Para un mismo sistema operativo corriendo en
diferentes plataformas, el nicleo independiente es exactamente el mismo, mientras que el dependiente det
re—escribirse.

Microkernel

Un nucleo con 'arquitectura’ microndcleo es aquél que contiene Unicamente el manejo de procesos y threac
el de manejo bajo de memoria, da soporte a las comunicaciones y maneja las interrupciones y operaciones
bajo nivel de entrada—salida. [Tan92]. En los sistemas oprativos que cuentan con este tipo de nlcleo se us:
procesos 'servidores' que se encargan de ofrecer el resto de servicios (por ejemplo el de sistema de archivc
gue utilizan al nucleo a través del soporte de comunicaciones.

Este disefio permite que los servidores no estén atados a un fabricante en especial, incluso el usuario puec
escoger 0 programar sus propios servidores. La mayoria de los sistemas operativos que usan este esquem
manejan los recursos de la computadora como si fueran objetos: los servidores ofrecen una serie de ‘llama
0 'métodos' utilizables con un comportamiento coherente y estructurado. Otra de las caracteristicas
importantes de los micronucleos es el manejo de threads. Cuando un proceso esta formado de un solo thre
éste es un proceso normal como en cualquier sistema operativo.

10

