
TEMA 1

INTRODUCCIÓN A LAS BASES DE DATOS

1.1.− De los sistemas tradicionales de ficheros a las bases de datos.

1.2.− Definición de base de datos.

1.3.− Elementos de una base de datos.

1.4.− Dato operativo.

1.5.− Ventajas de las bases de datos frente a los ficheros clásicos.

1.6.− Independencia de datos.

1.7.− Tipos de bases de datos.

1.1.− De los sistemas tradicionales de ficheros a las bases de datos.

Una de las primeras empresas en desarrollar un lenguaje de programación orientado a bases de datos fue
CODASYL que sobre los años 60 desarrolló el COBOL. Los principales motivos para el paso de los sistemas
tradicionales al uso de las bases de datos fueron los siguientes:

Rapidez al acceso de la información.•
Facilidad de trabajo, etc.•

1.2.− Definición de base de datos.

Una base de datos es un sistema de captación y mantenimiento de registros de forma computerizada. En este
sistema se van a poder realizar las siguientes operaciones: Inserción, borrado y modificación de un dato.
También se puede hacer modificaciones, borrados e inserciones de información en la estructura de la base de
datos.

1.3.− Elementos de una base de datos.

En una base de datos se tienen 4 elementos:

Datos.− Deben cumplir 2 condiciones:•

Deben ser integrados, es decir, recogen toda la información intentando que la redundancia sea
mínima.

•

Deben ser compartidos a nivel de aplicación.•

Hardware.− Es el soporte físico que permite almacenar la información de la base de datos. Cuando la base
de datos está formada por varios sistemas se llama base de datos distribuida. El manejo de las bases de
datos distribuidas se complica ya que se va a necesitar comunicación entre los sistemas.

•

Software.− Permite trabajar y gestionar la base de datos de la forma más eficiente. El SGBD (Sistema
gestor de bases de datos) es el encargado de gestionar la base de datos, y debe ofrecer facilidades para la
inserción, borrado y modificación de la información. Por lo tanto, todas las operaciones que se realicen

•

1

sobre las mismas han de pasar por el SGBD.
Usuarios.− Hay tres tipos de usuarios.•

Programadores de aplicaciones.− Se encargan de diseñar y programar las aplicaciones necesarias
para la utilización de la bases de datos, realizando las peticiones pertinentes al SGBD.

•

Usuario final.− Es la persona que se dedica a trabajar sobre los datos almacenados en la base de
datos. Hay usuarios finales avanzados que por medio del lenguaje de programación SQL pueden
acceder a los datos.

•

Administrador de base de datos.− Es el usuario más importante de los tres, ya que es el que se
encarga de diseñar y modificar la estructura de la base de datos.

•

1.4.− Dato operativo*.

Es toda la información que necesita una empresa para su funcionamiento. Son las entidades con sus atributos
más la conexión que hay entre ellas. La integración de todo lo anterior es el diseño lógico de la base de
datos.

Ejemplo:

1.5.− Ventajas de las bases de datos frente a los ficheros clásicos.

Las principales ventajas de las bases de datos sobre los ficheros clásicos son las siguientes:

Compacidad.•
Rapidez de acceso a la información.•
Facilidad de trabajo.•
Actualización.•
Control centralizado, ostentado por el administrador de la base de datos.•
Reducción de redundancias.•
Eliminar inconsistencias.•
Los datos pueden compartirse.•
Los estándares se mantienen.•
Mayor seguridad.•
Mayor facilidad en el chequeo de errores.•
Equilibrado de requerimientos opuestos.•

1.6.− Independencia de datos*.

2

La independencia de los datos es la impunidad de las aplicaciones existentes a cambios en la forma de
almacenamiento y acceso de la base de datos. Se dice que una aplicación es dependiente de los datos si es
imposible alterar la estructura de almacenamiento o la técnica de acceso sin afectar a la aplicación. En un
sistema de bases de datos no es recomendable tener aplicaciones dependientes de los datos, por dos razones:

Cada aplicación puede requerir una vista diferente de los mismos datos. Una aplicación puede requerir los
datos en formato decimal y otra puede requerirlos en binario.

•

El administrador de la base de datos ha de tener libertad para modificar la estructura de almacenamiento y
las técnicas de acceso para adaptarlos al cambio de los requerimientos sin tener que modificar las
aplicaciones ya existentes. Algunas de las modificaciones que podrían ser necesarias sería la adición de
datos de otro tipo a la base de datos, la aparición de nuevas normas (€), o un cambio de prioridades.

•

Se va a buscar la independencia de datos a tres niveles:

Nivel de campo almacenado.− Mínima cantidad de información que se almacena reconocible con un
nombre.

•

Nivel de registro almacenado.− Es un conjunto de campos almacenados relacionados entre sí, que cuenta
con su propio nombre. Una ocurrencia de registro almacenado es el valor de todos los campos de un
registro (Ej: Color = Azul, Talla = 10, Artículo = Tornillo)

•

Nivel de fichero almacenado.− Es el conjunto de todas las ocurrencias de un tipo de registro almacenado
reconocible con un nombre..

•

Un registro lógico es el registro que ve el usuario, y un registro físico es un registro tal y como se almacena en
la base de datos.

El campo lógico puede ser igual o no al campo almacenado. Por tanto se puede buscar la independencia de
datos basándose en este concepto, denominado materialización, que puede ser de dos formas:

Directa.− El campo lógico es igual al campo almacenado.•
Virtual.− El campo lógico se corresponde con parte o más del campo almacenado.•

Ejemplo:

A nivel de fichero almacenado debe preverse el medio físico en el que se va almacenar porque una base de
datos es dinámica.

Aspectos de una base de datos susceptibles de modificación.− Hay que tener mucho cuidado a la hora de
considerar las siguientes cuestiones

Representación de datos numéricos (binario, decimal...)•
Representación de caracteres (ASCII, EBCDIC...)•
Unidades para datos numéricos (Pta., €, ¥, £, $, DM)•
Codificación de los datos.•

La independencia es de los datos es fundamental porque las bases de datos son dinámicas.

1.7.− Tipos de bases de datos.

Para la implementación de la base de datos nos vamos a basar en dos estructuras de datos:

La tabla o array bidimensional, en el que se basa el modelo relacional.•
El grafo en el que se basan el modelo jerárquico (árbol) y el modelo en red (grafo cerrado).•

3

TEMA 2

ARQUITECTURA DE UN SISTEMA DE BASES DE DATOS

2.1.− Niveles generales del sistema.

2.1.1.− Nivel Externo.

2.1.2.− Nivel Conceptual.

2.1.3.− Nivel Interno.

2.1.4.− Correspondencias

2.2.− El Administrador de la Base de Datos.

2.1.− Niveles generales del sistema.

El grupo ANSI / SPARC creó un standard para las arquitecturas de las bases de datos. En esta estandarización
se define una arquitectura para los sistemas de bases de datos divida en tres niveles:

Vista 1 Vista 2 Vista n Nivel externo (Vistas individuales de los usuarios).

Nivel conceptual (Vista comunitaria de los usuarios).

Nivel interno. (Vista de la forma de almacenamiento).

En bases de datos pequeñas el nivel conceptual y el nivel interno suelen estar unidos.

Ejemplo: En una empresa están trabajando dos programadores, uno en sobre el lenguaje de programación
PL/I y el otro en COBOL. En el nivel externo los usuarios van a trabajar sobre la base de datos. Sobre el nivel
conceptual e interno únicamente trabaja el administrador de la base de datos.

Externo (PL/I)

DCL 1 EMP . 2 EMP# CHAR(6)

3 SAL FIXED BIN(31)

Externo (COBOL)

01 EMPC

. 02 NUMEMP PIC X(6)

. 02 NUMDEP PIC X(4)

Vistas
Externas

Conceptual

Empleado

numero _ empleado carácter(6)

numero _ departamento carácter(4)

salario numérico(5)

V.
Conceptuales

Interno

EMP_ALMAC longitud = 18

Vista Interna

4

Prefijo tipo = byte(6), desplazamiento = 0

EMP# tipo = byte(4), desplazamiento = 6, Índice =EMP

DPTO# tipo = byte(4), desplazamiento = 12

Paga tipo = palabra, desplazamiento = 16

2.1.1.− Nivel Externo.

El nivel externo está formado por las vistas individuales de cada uno de los usuarios, es decir, cómo percibe el
usuario la base de datos. Éste es el nivel en el cual trabaja el usuario individual. Los usuarios pueden ser o
bien programadores de aplicaciones o usuarios finales, donde cada usuario dispone de un lenguaje. En el caso
de un programador de aplicaciones dicho lenguaje puede ser un lenguaje de alto nivel para manejar la base de
datos y si la base de datos no lo permite, se utilizará un lenguaje propio del sistema de bases de datos (como
NOMAD ó FOCUS). En el caso de ser un usuario final será o bien un lenguaje de consulta, (como el SQL) o
algún lenguaje de aplicación basado en menús.

Los lenguajes de programación deben incluir un sublenguaje de datos (DSL), es decir, un subconjunto del
lenguaje total que se ocupe de manera específica de los objetos y operaciones de la base de datos. Se dice que
el DSL está embebido dentro del lenguaje anfitrión correspondiente. En principio, cualquier DSL es en
realidad una combinación de por lo menos dos lenguajes subordinados:

DDL. (Lenguaje de definición de datos).− Con el que es posible definir o declarar los objetos de la
base de datos.

•

DML. (Lenguaje de manipulación de datos).− Con el que es posible manipular o procesar dichos
objetos..

•

Cuando el DSL es indistinguible del lenguaje anfitrión se dice que está fuertemente acoplado y si se pueden
separar con nitidez se dice que están débilmente acoplados. Son preferibles los lenguajes fuertemente
acoplados.

A la vista individual de cada usuario se denomina vista externa. La vista externa está formada por el conjunto
de ocurrencias de los registros externos. Toda vista externa se define mediante un esquema externo que es la
definición de los tipos de registros externos en esa vista externa. El esquema externo se escribe mediante el
DDL.

2.1.2.− Nivel Conceptual.

Está formado por la vista comunitaria de los usuarios, es decir, que al unir todas las vistas externas obtenemos
toda la información. Es la representación de toda la información contenida en la base de datos.

La vista conceptual se compone de las ocurrencias de los diferentes tipos de registro conceptual. Esta vista se
define por medio del esquema conceptual, que está formado por la definición de cada uno de los tipos de
registro conceptual.

El esquema conceptual se define mediante el DDL conceptual. El DDL externo debe ser distinto al DDL
conceptual. Si se logra hacer totalmente independiente el DDL conceptual a los datos, el nivel externo
también lo será.

En el nivel conceptual no deben aparecer consideraciones sobre el almacenamiento (para tratar de conseguir la
independencia de los datos). Sin embargo, las definiciones en el esquema conceptual deben incluir

5

características tales como las verificaciones de seguridad y de integridad.

2.1.3.− Nivel Interno.

Está formado por las vistas del almacenamiento (la forma en que se almacenan los datos). Es una
representación de bajo nivel de toda la base de datos y se compone de las ocurrencias de los diferentes tipos
de registro interno. Está a un paso del nivel físico, ya que no gestiona a nivel de páginas o bloques.

La vista interna se define mediante el esquema interno, el cual no sólo define los diversos tipos de registros
almacenados, sino que también especifica que índices hay, la representación de los campos almacenados, la
secuencia física de los registros almacenados, etc. El esquema interno se define mediante el DDL interno

2.1.4.− Correspondencias.

Se distinguen dos tipos de correspondencias que se encargan de conectar los tres niveles de una base de datos:

Conceptual − Interna.− Permite enlazar la vista conceptual con la base de datos almacenada (vista
interna) y permite representar los registros y campos conceptuales en el nivel interno. Si se modifica
la definición de la estructura de almacenamiento esta correspondencia deberá modificarse también de
para que no varíe el esquema conceptual. Este tipo de correspondencia permite llevar a cabo el
concepto de independencia de los datos. En el caso de modificación del nivel interno es esta
correspondencia la que debe verse afectada de manera que los cambios no involucren al nivel
conceptual.

•

Externa − Conceptual.− Enlaza las vistas externas con la vista conceptual y permite relacionar los
nombres de los registros y campos externos con los nombres de los registros y campos conceptuales.
También se encarga de mantener la correspondencia en el caso de que varios registros o campos
conceptuales se correspondan con uno o más registros o campos externos (materialización).

•

2.2.− El Administrador de la Base de Datos.

El administrador de la base de datos tiene seis misiones fundamentales:

Describir el contenido de la información en la base de datos, es decir, diseñar el esquema conceptual.
Para esto, primero se mira la información que la empresa necesita para su funcionamiento y luego se hace
el diseño lógico de la base de datos.

•

Decidir sobre la estructura de almacenamiento, es decir, definir el esquema interno por medio del DDL
interno. Va a tener que diseñar la parte física de la base de datos (como se representarán los campos, como
se organizarán los registros, la indexación, las formas de acceso, la seguridad física...). También va a tener
que diseñar la correspondencia conceptual − interna.

•

Se encarga de la conexión con los usuarios. Capta la visión externa de cada usuario y luego desarrolla el
esquema externo al que está asociado. Además va a ser el encargado de diseñar la correspondencia externo
− conceptual. También deberá crear un entorno amigable para el usuario. Al programador de aplicaciones le
va a proporcionar ayuda para la implementación de la vista externa (DDL externo), aunque algunos
sistemas permiten que el programador diseñe e implemente su propia correspondencia. Le dará al
programador un lenguaje para la explotación del esquema externo (DML).

•

Tratar los problemas de seguridad e integridad.•
Definir la estrategia de recuperación de fallos.•
Ocuparse de los problemas de rendimiento (afinamiento).•

Pregunta de examen:

6

¿A qué equivalen el registro lógico y el registro almacenado a nivel de arquitectura?

El registro lógico se corresponde con el registro externo porque es lo que percibe el usuario, mientras que el
registro almacenado se corresponde con el registro conceptual.

TEMA 3

EL MODELO ENTIDAD − RELACIÓN

3.1.− Conceptos básicos.

3.1.1 Conjuntos de entidades

3.1.2 Conjuntos de relaciones.

3.2.− Cuestiones de diseño.

3.3.− Ligaduras de correspondencias.

3.4.− Claves

3.5.− Diagrama Entidad − Relación.

3.6.− Conjuntos de entidades débiles.

3.7.− Características del modelo Entidad − Relación extendido.

El modelo Entidad − Relación está basado en una descripción del mundo real formado por dos tipos de
objetos básicos: las entidades y las relaciones entre objetos. Este modelo surge por la necesidad de plasmar la
información que debe ir en la base de datos y para plasmar la especificación de información que necesita una
empresa.

El modelo Entidad − Relación pertenece al grupo de modelado semántico que pretende representar el
significado de los datos. El modelo Entidad − Relación sirve para crear el esquema conceptual.

3.1 Conceptos básicos

Hay tres conceptos básicos:

Conjuntos de entidades.•
Atributos.•
Conjuntos de relaciones.•

3.1.1 Conjuntos de entidades

Una entidad es un objeto en el mundo real que es distinguible de todos los demás y que posee un conjunto de
propiedades (atributos). Va a haber un subconjunto de propiedades cuyos valores van a determinar de una
manera unívoca a una entidad, como por ejemplo un campo DNI.

Un conjunto de entidades es la totalidad de entidades del mismo tipo que compartía las mismas propiedades
ó atributos.

7

Las entidades individuales que constituyen un conjunto se llaman extensiones. Los conjuntos de entidades no
tienen por qué ser disjuntos.

Una entidad se representa mediante un conjunto de atributos, que permiten describir propiedades de cada
miembro del conjunto de entidades. Cada atributo tiene un conjunto de valores permitido. Cada conjunto se
llama dominio.

Una base de datos es una colección de conjuntos de entidades.

Ejemplo: Conjunto de entidades Cliente y Prestamo_Bancario

Formalmente un atributo de un conjunto de entidades es una función que asigna al conjunto de entidades un
dominio. Por tanto, una entidad se puede describir como un conjunto de pares atributo − valor, uno por cada
atributo.

Ejemplo:

CLIENTE: {(Nombre, Santos), (DNI, 3569852), (Calle, C/Amargura), (Ciudad, A Coruña)

En el modelo Entidad − Relación existen distintos modelos de atributos:

Simples y compuestos.•
Univalorados y multivalorados.•
Nulos.•
Derivados.•

Atributos simples y compuestos.− Los atributos simples son aquellos que no tienen capacidad de
ser descompuestos, mientras que los atributos compuestos son aquellos que permiten descomponerse
en otros atributos conformando lo que se denominan jerarquías. Un ejemplo de atributo simple
podría ser la edad, mientras que uno compuesto podría ser la dirección de un cliente:

•

Es conveniente usar atributos compuestos porque facilitan el diseño haciéndolo más claro y sencilo.

Atributos univalorados y multivalorados.− Los atributos univalorados son aquellos que sólo
pueden tomar un valor (NombreCliente), mientras que los atributos multivalorados pueden tomar
más de un valor para un mismo atributo (DirecCliente, NumTlf). Hay que marcar siempre un límite
inferior y un límite superior.

•

Atributos nulos.− Un atributo es nulo cuando para una determinada entidad ese atributo no tiene
valor. Se entiende nulo como desconocido. Un atributo nulo es no conocido cuando no se ha
introducido un valor en el campo correspondiente, y está perdido cuando se produce un error en la
base de datos y el valor se pierde o se corrompe.

•

Atributos derivados.− El valor para este atributo se puede derivar de los valores de otros atributos ó
entidades. Por ejemplo, si existe un campo fecha_nacimiento, la edad sería un atributo derivado

•

3.1.2 Conjuntos de relaciones

Relación.− Una relación es una asociación entre diferentes entidades. Un conjunto de relaciones es una
relación matemática con dos o más conjuntos de entidades. Si E1, ..., En son conjuntos de entidades, entonces
un conjunto de relaciones
donde (e1,..., en) es una relación. La asociación entre conjuntos de entidades se denomina participación.

8

La función que desempeña una entidad en una relación se denomina papel de la entidad, y es necesario
especificarlo cuando el significado en una relación necesita aclaración.

Cuando los conjuntos de entidades que se relacionan son iguales, se denominan conjuntos de entidades
recursivos. Una relación puede tener asociadas una serie de atributos descriptivos (un nombre).

Al número de conjuntos de entidades que participan en un conjunto de relaciones se le denomina grado del
conjunto de relaciones.

3.2 Cuestiones de diseño.

Uso de conjuntos de entidades ó atributos.− La utilización de conjuntos de entidades o atributos
depende del desarrollo del mundo real que se esté modelando y de la semántica asociada al atributo
considerado.

•

Uso de conjuntos de entidades o conjuntos de relaciones.− Se realizará de la siguiente manera: se
debe designar un conjunto de relaciones para describir una acción entre entidades.

•

3.3 Ligaduras de correspondencias.

Correspondencia de cardinalidad.− Es aquella que expresa el número de entidades a las que otra entidad
puede estar asociada mediante un conjunto de relaciones, permitiendo describir conjuntos de relaciones
binarias.

Dado un conjunto de relaciones binarias R entre los conjuntos de entidades A y B, la correspondencia de
cardinalidad puede ser:

De uno a uno.− Se da cuando una entidad en A se asocia con una entidad en B o cuando una entidad en B
se asocia con una entidad en A.

•

De uno a muchos.− Se da cuando una entidad en A se asocia con cualquier número de entidades en B y
una entidad en B sólo se puede asociar con una entidad en A.

•

De muchos a uno.− Es el caso inverso al anterior, siendo una entidad en B la que se puede asociar con
cualquier número de entidades en A y una entidad en A la que sólo puede asociarse con una entidad en B.

•

De muchos a muchos.− Cualquier entidad de cualquiera de los dos conjuntos puede asociarse con
cualquier número de entidades del otro conjunto.

•

La cardinalidad de una relación puede afectar a la situación de los atributos de la relación. Cuando la
cardinalidad es uno a uno, el atributo descriptivo puede ir en cualquiera de los dos conjuntos. Si es de uno a
muchos o de muchos a uno, deberá ir en el conjunto de muchos. Y si es de muchos a muchos, deberá
permanecer en el conjunto de relaciones.

Dependencias de existencia.− Si la existencia de la entidad X depende de la existencia de la entidad Y, se
dice que X tiene dependencia de existencia de Y. La entidad Y es la entidad dominante y X es la entidad
dominada.

La participación de un conjunto de entidades E en un conjunto de relaciones R es total si cada entidad en E
participa en al menos una relación de R. Si sólo algunas entidades en E participan en relaciones en R, la
participación se denomina parcial.

3.4 Claves

Las claves tienen que ser definidas respecto al conjunto de entidades y con respecto al conjunto de relaciones.

9

Con respecto al conjunto de entidades se definen:•

Superclave.− Conjunto de atributos que permiten identificar de manera unívoca a cada una de las entidades
del conjunto de entidades. Un ejemplo de esto sería un campo DNI.

Clave Primaria.− Es la clave candidata que es elegida por el diseñador de la base de datos para identificar a
cada una de las entidades de un conjunto de entidades.

Con respecto al conjunto de relaciones se utiliza para distinguir entre las diferentes relaciones de un
conjunto y se define:

•

Sea R un conjunto de relaciones que implica a los conjuntos de entidades E1, ..., En. Sea clave primaria (Ei)
el conjunto de atributos que forma la clave primaria para el conjunto de entidades Ei:

Clave Primaria (R) = Clave Primaria (E1) "..." Clave Primaria (En)

La clave primaria del conjunto de relaciones es la unión de las claves primarias de los conjuntos de entidades,
sin tener en cuenta los posibles atributos descriptivos del conjunto de relaciones R.

Esta clave primaria se verá afectada por la cardinalidad del conjunto de relaciones de la siguiente manera:

Muchos a muchos.− Está formada por la clave primaria de cada uno de los conjuntos de entidades de
R. (K1 " K2).

•

Uno a muchos (y viceversa).− Está formada por la clave primaria del conjunto de entidades que
establece la cardinalidad de muchos. (K1 en uno : muchos y K2 en muchos : 1)

•

Uno a uno.− La clave primaria de R está formada por cualquiera de las claves primarias de los
conjunto de entidades. (K1 ó K2)

•

3.5 Diagrama Entidad − Relación

Los diagramas Entidad − Relación representan la estructura lógica de una base de datos de manera gráfica.
Los símbolos utilizados son los siguientes:

Rectángulo.− Conjunto de entidades.•
Elipse.− Atributos.•
Rombos.− Conjunto de relaciones•
Líneas.− Unen atributos a conjuntos de entidades; unen atributos a conjuntos de relaciones; y unen
conjuntos de entidades con conjuntos de relaciones. Si la flecha tiene punta, en ese sentido está el uno
y si no la tiene, en ese sitio está el muchos. La orientación señala cardinalidad.

•

Elípse doble.− Se trata de dos elipses concéntricas. Representan atributos multivalorados.•
Elipse discontinua.− Atributos derivados.•
Líneas dobles.− Indican participación total de un conjunto de entidades en un conjunto de relaciones.•
Subrayado.− Subraya los atributos que forman parte de la clave primaria del conjunto de entidades.•

Si el conjunto de relaciones tiene atributos asociados, se le unen a la relación. En los diagramas Entidad −
Relación se indican los papeles (roles) mediante etiquetas en las líneas que unen los conjuntos de relaciones
con conjuntos de entidades.

Los conjuntos de relaciones no binarias se especifican uniendo al conjunto de relaciones tantas entidades
como marque la relación. No es recomendable su utilización, prefiriéndose el uso de relaciones binarias.

3.6 Conjuntos de entidades débiles.

10

¿Tiene sentido un conjunto de entidades débiles para cualquier tipo de cardinalidad en un conjunto de
relaciones binario? La respuesta es no. Sólo tiene sentido en el caso uno a muchos.

Se denomina discriminante de un conjunto de entidades, y se representa con un subrayado discontinuo, al
conjunto de entidades que permiten la distinción entre las entidades que dependen de una entidad particular
fuerte. El discriminante de un conjunto de entidades débil se llama clave parcial del conjunto de entidades.

La clave primaria de un conjunto de entidades débil se forma mediante la clave primaria del conjunto de
entidades fuerte más el discriminante del conjunto de entidades débil.

El conjunto de entidades dominante se denomina propietario del conjunto de entidades débiles que identifica.

La relación que asocia al conjunto de entidades débil con un propietario se llama relación de identificación y
se marca con un doble rombo..

3.7 Diseño de un esquema de bases de datos Entidad − Relación.

Para un diseño de un esquema de base de datos hay cuatro fases:

Especificación de requisitos del usuario.− Consiste en obtener las necesidades de datos de los usuarios de
la base de datos, esto es, sonsacarle al usuario toda la información que se desea plasmar en la base de datos.
Esta es la fase que se dará en el examen.

•

Diseño conceptual (Entidad − Relación).•
Especificación de requisitos funcionales.− Vamos a definir las operaciones que se harán sobre la base de
datos (operaciones permitidas sobre la base de datos)

•

Especificación de requisitos funcionales.− Primero se procede a realizar el diseño lógico, que consiste en
adaptar el diseño conceptual al sistema de gestión de la base de datos, y a continuación se realiza el diseño
físico, que consiste en dar todas las características de almacenamiento de la base de datos.

•

TEMA 4

EL MODELO RELACIONAL

4.1.− Elementos del modelo.

4.2.− Esquemas de relación.

4.3.− Dependencias funcionales.

4.4.− Dependencias transitivas, dependencias parciales, claves.

4.5.− Cierre de un descriptor respecto de un conjunto de dependencias funcionales.

4.6.− Recubrimientos no redundantes.

4.7.− Algoritmo de determinación de las claves de un esquema.

4.8.− Partición funcional.

4.9.− Algoritmo de Simplificación − Reducción.

4.10.− Algoritmo de Síntesis

11

4.1.− Elementos del modelo.

Se procederá a definir de una manera formal el método de datos. Todo modelo de datos se compone de tres
partes:

Parte estructural.− Se encarga de definir las estructuras de datos que sirven como base para el modelo a
realizar.

•

Parte manipulativa.− Es el conjunto de operadores que se van a tener para manejar la estructura de datos y
poder trabajar con el modelo.

•

Parte semántica.− Viene dada por las restricciones semánticas y las reglas de integridad. Marca el
conjunto de restricciones que debe verificar el modelo

•

Parte estructural.

En el modelo de datos relacional la estructura de datos es la relación. La relación es un subconjunto del
producto cartesiano de dominio. Se van a definir atributos para cada uno de esos dominios y las filas se
denominan tuplas.

A1 A2 ... An

a11 a12 ... a1n

a21 a22 ... a2n

...

am1 am2 ... amn

El subíndice de cada columna marca el grado de la relación, mientras que los subíndices de los elementos de
la tabla indican su cardinalidad. En estas tablas m marca el número de tuplas, y n el de atributos. Como la base
de datos es dinámica el valor de m no se va a mantener constante. El dominio es el rango de valores que
puede alcanzar un atributo, o lo que es lo mismo, a cada uso particular de un dominio en una relación se le
llama atributo.

(A " Dom(A)), r " Dom(A1) x Dom(A2) x ... x Dom(An).

Los dominios de dos o más atributos diferentes pueden ser coincidentes pero los nombres de su atributo
asociado tienen que ser diferentes.

Una de las características más importantes es que se pueden tratar como conjuntos y por ello el orden de los
atributos y de las tuplas es indiferente.

Parte manipulativa

Se van a tener los operadores del álgebra relacional que nos darán los operadores necesarios para manejar esta
estructura. El SQL es una extensión del álgebra.

Parte semántica

Clave primaria.− Conjunto mínimo de atributos cuyo valor determina el de todos los demás de la relación.
Cada relación va a tener una clave primaria y los dominios sobre los que se selecciona esta clave se llaman
dominios primarios.

Clave externa.− También denominada externa o foránea. Se utiliza para enlazar relaciones y se define de la
siguiente manera: es el atributo o conjunto de atributos que forma parte de la clave primaria de una relación r

12

y que aparece como clave primaria de otra relación s.

La parte semántica está formada por dos reglas de integridad:

Reglas de integridad (de entidad).− Ningún valor de la clave primaria de una relación puede ser o contener
algún componente nulo (desconocido).

Reglas de integridad referencial.− Sea un atributo A de una clave primaria compuesta (más de un atributo)
de una relación r, que está definido sobre un dominio primario. Entonces para cada valor a de A tiene que
existir una relación s con clave primaria simple (b) tal que a ocurre como un valor de b en s.

Ejemplo.− S# P# CTD S# NomS Estado Ciudad

S1 P1 100 S1 X 10 L

S1 P2 20 a S2 Y 20 M

a S2 P3 30 S3 B 30 P

S2 P4 40 S4 X 40 S

S3 P5 30 S5 Y 10 L

4.2.− Esquemas de relación.

Dos ocurrencias r1 y r2 que pertenecen a T (conjunto de atributos) verifican el mismo conjunto de reglas de
integridad, que vamos a llamar L y que estará formado por las reglas de integridad entidad y referencial y por
todas las restricciones que permiten definir la semántica del problema.

El esquema de relación es el par formado por T y L. A cualquier subconjunto de T se le llama descriptor.

4.3.− Dependencias funcionales.

Sea x ! y una dependencia funcional (x, y " T). Se dice que y depende de x si x ! y " L., esto quiere decir, que
para toda ocurrencia de r " R(T, L), siendo x e y subconjuntos de T el valor de x determina unívocamente al
valor de y.

Dada una relación R, el atributo Y de R depende funcionalmente del atributo X de R si y sólo si, siempre que
dos tuplas de R concuerden en su valor de X, deben por fuerza concordar en su valor de Y.

Ejemplo: Ver figura 4.1.

D.F. de S: S# ! NOMS. D.F. de P: P# ! NOMP. D.F. de SP: S#, P# ! CTD.

S# ! ESTADO. P# ! COLOR.

S# ! CIUDAD. P# ! PESO.

ESTADO ! CIUDAD. P# ! CIUDAD.

El conjunto L está formado por todas las dependencias funcionales del problema. Entonces dado el conjunto L
siempre se pueden deducir otras dependencias funcionales a partir de él, esto es lo que se llama el conjunto L

13

+ que se denomina cierre de L.

L + se calcula en base a los axiomas de Armstrong:

Reflexividad.− Para todo descriptor x, se deduce que x depende de si mismo. ("x, x ! x).•
Aumentatividad.− Si y depende de x, entonces y depende de x' siendo x' un superconjunto de x.•

(x ! y ! x'! y, x' " x).

Proyectividad.− Si y depende de x, entonces y' depende de x, siendo y' un subconjunto de y.•

(x ! y ! x! y', y' " y).

Aditividad.− Si y depende de x y si w depende de u entonces y unido con w depende de x unido con u. (x !
y, u ! w ! x " u ! y " w).

•

Transitividad.− x!y, y!z ! x ! z.•

4.4.− Dependencias transitivas, dependencias parciales, claves.

Se va a definir una dependencia transitiva entre dos descriptores (x e y) de la siguiente forma: x!y x " y = �,
x " z = �, " z " T y se cumple que z depende de x: x ! z y z ! y ð z ! y.

Ejemplo.− S# ! Estado. S# ! Ciudad. Existe una dependencia transitiva entre

Estado ! Ciudad. Proveedor (S#) y Ciudad

Se va a decir que la dependencia x ! y es parcial si existe un x' subconjunto de x, tal que y depende de x'. (x !
y parcial ! " x' " x / x' ! y).

Ejemplo.− AB ! C Es una dependencia parcial, ya que hay un subconjunto de AB B ! C del que depende C.

Se va a decir que la dependencia x ! y es total si no existe ningún subconjunto de x del cual dependa y. (x ! y
total ! no " x' " x / x' ! y).

Clave de un esquema.− Se dice que un descriptor K, subconjunto propio del conjunto de atributos (K " T) es
clave del esquema R (T, L) cuando se cumple x T ó (K ! T) " L+, y no hay ningún subconjunto propio de K
con la misma propiedad.

Un mismo esquema puede tener más de una clave. Los atributos que pertenecen a la clave se llaman atributos
principales. Los atributos que no pertenecen a la clave se llaman atributos no principales.

4.5.− Cierre de un descriptor respecto de un conjunto de dependencias funcionales.

Sea un X un descriptor, siendo X subconjunto propio de T (X " T) y L un conjunto de dependencias
funcionales. Cierre de X (que vamos a llamar X+) respecto al conjunto de dependencias funcionales L es un
descriptor que cumple (X ! X+) " L+ y además X+ es máximo.

Ejemplo.− X ! Y, B

X ! Z Cierre de X (X+) es el conjunto de valores identificados por X.

Y ! B

14

El algoritmo para calcular el cierre de X es el siguiente:

Determinar el descriptor X(i) con la propiedad (X ! X(i)) " L+ y de forma que X(i) es X(i−1) incrementando
en los atributos Ak tales que (U!V) " L, U " X(i−1) y Au " V, partiendo de X(0) = 0.

Ejemplo:

X ! Y X(0) = X

X ! Z X(1) = X, Y

Y ! B X(2) = X, Y, Z, B

Es un proceso finito ya que T también lo es y X+ es máximo ya que van a estar todos los atributos que
dependen de X.

Ejemplo: Calcular el cierre del conjunto de atributos (BD)+ respecto al siguiente conjunto de dependencias
funcionales:

AB ! C BE ! C X(0) = BD

C ! A CG ! BD X(1) = BDEG

BC ! D CE ! AG X(2) = BDEGC

ACD !B X(3) = BDEGCA

D ! EG

4.6.− Recubrimientos no redundantes.

Dos conjuntos con dependencias funcionales L y M son equivalentes si y sólo si sus cierres son iguales. Esto
va a ocurrir si y sólo si f(x ! y) " L + está en M+ y f(u ! v) " M+ esta en L +. También se dice que L recubre a
M y que M recubre a L.

La tarea de calcular el cierre de L es muy complicada, por lo tanto para saber si la dependencia X!Y que
pertenece a L esta en M+ calculamos el cierre de X (X+) respecto a M ya que si se cumple (X!X+) " M
entonces si Y " X+ ! X ! Y " M+.

Condiciones que debe cumplir un conjunto de dependencias funcionales para no ser redundante:

Que todas las dependencias tengan su segundo miembro simple (formado por un único atributo): (X Ai) (Ai
= segundos miembros simples).

•

Que no haya dependencias funcionales redundantes. Una dependencia XAi " M es redundante en M cuando
su supresión no altera el cierre. (M − XAi)+ = M+.

•

No hay atributos extraños. Una atributo Bi " X es extraño en la dependencia funcional X!Ai que pertenece a
M cuando llamando Z al descriptor X − {Bi} el cierre de M no se altera al sustituir X!Ai por Z ! Ai. M −
{X ! Ai } " {Z ! Ai }+ = M+. Sólo hay atributos extraños en miembros compuestos.

•

Pregunta de Examen.− ¿Es posible que partiendo de un mismo conjunto de dependencias funcionales exista
más de un recubrimiento no redundante?

15

Si, porque depende del orden en que lo hagamos. Pueden ser encontrados diferentes recubrimientos no
redundantes, todos ellos equivalentes.

Dado un conjunto L de dependencias funcionales siempre va a existir un subconjunto equivalente M no
redundante que será como mínimo igual a L.

El algoritmo para calcular el conjunto M va a contener tres pasos:

Para toda dependencia X!Y de L se sustituye por X!A1, X!A2, ..., X!Ak, siendo A1, A2,.., Ak atributos de
Y. Al conjunto resultante se le llama L (1).

•

Ejemplo: A ! BCD ! A ! B, A ! C, A! D.

Para toda dependencia X ! Ai de L (1) determinamos el cierre de X respecto de L (1) − {X ! Ai}. Si Ai
pertenece a X+ quiere decir que la dependencia X ! Ak es redundante en L (1) y se elimina. (Si Ak " X+ ! X
! Ak es redundante y se elimina). Al conjunto resultante se le llama L (2).

•

Para toda dependencia X ! Ai de L (2), si Bi es un atributo de X (Bi "X) y siendo Z = X −{Bi} se calcula el
cierre de Z respecto de L (2). Si Ai " Z, esto quiere decir que (Z ! Ai) " L (2)+, de modo que la sustitución
de X ! Ai por Z ! Ai conduce a un conjunto equivalente.

•

El conjunto resultante se va a llamar L (3). Se tiene que L (3) = M.

Ejemplo de cálculo del recubrimiento no redundante de:

L:

AB ! C ACD ! B CG ! BD

C ! A D ! EG CE ! AG

BC ! D BE ! C

Calculo de L (1):•

AB ! C

C ! A

BC ! D

ACD !B Eliminado el paso d)

D ! E

D ! G

BE ! C

CG ! B

CG ! D Eliminado en el paso i)

16

CE ! A Eliminado en el paso j)

CE ! G

Calculo de L (2).•
AB ! C , (AB)+ respecto de L (1) − {AB ! C} = AB•

Como C " AB, AB ! C no es redundante.

C ! A , (C)+ respecto de L (1) − {C ! A} = C•

Como A " C, C ! A no es redundante.

BC ! D , (BC)+ respecto de L (1) − {BC ! D} = BCA•

Como D " BCA, BC ! D no es redundante.

ACD ! B , (ACD)+ respecto de L (1) − {ACD ! B} = ACDEGB•

Como B " ACDEGB, ACD ! B es redundante y se elimina.

D ! E , (D)+ respecto de L (1) − {D ! E} = DG•

Como E " DG, D ! E no es redundante.

D ! G , (D)+ respecto de L (1) − {D ! G} = DE•

Como G " DE, D ! G no es redundante.

BE ! C , (BE)+ respecto de L (1) − {BE ! C} = BE•

Como C " BE, BE ! C no es redundante.

CG ! B , (CG)+ respecto de L (1) − {CG ! B} = CGADE•

Como B " CGADE, CG ! B no es redundante.

CG! D , (CG)+ respecto de L (1) − {CG ! D} = CGABD•

Como D " CGABD, CG ! D es redundante y se elimina.

CE ! A , (CE)+ respecto de L (1) − {CE ! A} = CEA•

Como A " CEA, CE ! A es redundante y se elimina.

CE ! G , (CE)+ respecto de L (1) − {CE ! G} = CEA•

Como G " CEA, CE ! G no es redundante.

El conjunto resultado L (2) es el siguiente:

AB ! C D ! E CG ! B

17

C ! A D ! G CE ! G

BC ! D BE ! C

El único atributo no compuesto subconjunto de algún atributo compuesto es C, se calcula el cierre de C, C+
= CA, como no se puede obtener otro a partir de este el conjunto L (3) es el mismo que L (2) .

•

4.7.− Algoritmo de determinación de las claves de un esquema.

Este algoritmo determina todas las claves del esquema. Dado un esquema de relación R y un conjunto de
atributos y otro de dependencias funcionales donde Si van a ser los implicantes de la dependencia y Si " Sj.

R(T, L)

; Si " Sj , Si " Xj = � , "i

Ahora se hace la matriz de implicación que representa al conjunto de dependencias funcionales L.

Atributos de T

A1 A2 An

Implicantes S1

de cada una S2

de las S3

dependencias

funcionales Sm

La matriz se rellena de la siguiente forma; cada posición de la matriz va a tomar el valor: 1 si Aj pertenece a
(Si " Xj) y tomará el valor 0 si Aj no pertenece a (Si " Xj).

1 si Aj " (Si " Xj)

Es decir: lij :

0 si Aj " (Si " Xj)

Ejemplo:

AB ! C

Si AC ! D Xj

B ! A

Matriz de implicación:

A B C D

AB 1 0 1 1

18

AC 1 0 1 1

B 1 1 0 0

Una vez calculada la matriz hay que calcular el cierre de L. Se calcula mediante el algoritmo del cierre
transitivo de L.

ALGORITMO PARA EL CALCULO DEL CIERRE DE L:

L + = L

DO UNTIL L + no cambie más

" Si " Sj en L +, si " Ak " Sj lin = 1

Copiar todas las entradas `l' de la fila Si

en los lugares homólogos de la fina Si.

END DO

END.

Otro método para el calculo del cierre de L es el siguiente:

L + =

, Todos los atributos que están a 1 de L + .

Los 0 son todos aquellos descriptores de la forma T − (Si " Yi) = Y'i.

Ejemplo: (AB)+ = ABCD L + A B C D

(AC)+ = ACD AB 1 1 1 1

(B)+ = ABCD AC 1 0 1 1

B 1 1 1 1

Nomenclatura:

Si ! Implicantes. Y'i ! Ceros Yi ! Unos |x| nº de atributos de x.

ALGORITMO DE CLAVES: (Ver folio 4.1.).

4.8.− Partición funcional *.

La partición funcional permite reducir los tamaños de las matrices en el algoritmo de cálculo de claves, por
tanto va a haber un menor consumo de memoria con una ganancia de rapidez, para ello se van a buscar las
clases de equivalencia de las dependencias funcionales.

Descompone un esquema de relaciones en subesquemas, y se basa en el concepto de relación de equivalencia.

19

La relación de equivalencia cumple las propiedades reflexiva, simétrica y transitiva, y permite particionar un
concurso.

Sea L:

y Si " Sj, para todo i " j, y Sj ! Xi

Si fi " Si ! Xi fj " Sj ! Xj

Se va a definir una relación de adyacencia (R) de forma que:

fi está relacionado con fj si y sólo si (Si " Xi) " (Sj " Xj) " 0

fi no está relacionado con fj si y sólo si (Si " Xi) " (Sj " Xj) = 0

Esta relación es reflexiva y simétrica. A partir de esta relación se va a definir otra relación denominada
relación de conexión (") de forma que fi " fj si y sólo si fi está relacionado con fj. La relación de conexión
también es transitiva. En esta relación, si dos fi son adyacentes se conectan, y si no, habrá que buscar un
camino entre ellas.

A partir de esto se definen las clases de equivalencia:

fi R f(Ki) i = 1

fi R fKj R f(Kj) ... R F(Ki).

La matriz de adyacencia va a estar formada por el conjunto de dependencias funcionales. Esta matriz también
es llamada matriz de conexión y representa la relación de conexión.

f1 f2 ... f2

f1

f2

...

fn

Ejemplo:

f1: AB ! C

f2: B ! D

f3: E ! F

f1 f2 f3

f1 1 1 0

f2 1 1 0

f3 0 0 1

Ejercicio:

20

Dado el esquema R (T, L)

T={A,B,C,D,F,G,H,I,J,K,L,M}

L={f1, f2, f3, f4, f5, f6}

f1: AB ! C

f2: H ! KL

f3: BD ! FG

f4: AE ! C

f5: KM ! L

f6: I ! J

Se parte de un recubrimiento no redundante.•
Calculo de claves.•

Partición funcional.•

Matriz de adyacencia

f1 f2 f3 f4 f5 F6

f1 1 0 1 1 0 0

f2 0 1 0 0 1 0

f3 1 0 1 0 0 0

f4 1 0 0 1 0 0

f5 0 1 0 0 1 0

f6 0 0 0 0 0 1

Matriz de conexión.

f1 f2 f3 f4 f5 f6

f1 1 0 1 1 0 0

f2 0 1 0 0 1 0

f3 1 0 1 1 * 0 0

f4 1 0 1 * 1 0 0

f5 0 1 0 0 1 0

f6 0 0 0 0 0 1

* Celda que cambió de 0 a 1.

Clases de equivalencia.− Hay que encontrar filas de unos y ceros que se repitan y estas forman una clase de
equivalencia:

[f1, f3, f4] , [f2, f5] , [f6]

21

Algoritmo de claves (Para cada clase de equivalencia).•

1) Calculo de L +.•

L1: AB ! C T1 = {A,B,C,D,E,F,G} (AB)+ = ABC

BD ! FG (BD) + = BDFG

AE ! C (AE) + = AEC

L + A B C D E F G

AB 1 1 1 0 0 0 0

BD 0 1 0 1 0 1 1

AE 1 0 1 0 1 0 0

2) M1 = �, M2 = �.•

3) M1 = {ABDEFG, ABCDE, ABDEFG}•

4) No hay ninguna fila que cumpla que |Yi| " 1, y otra que cumpla |Y'j| " 1.•

5) No todas las entradas de M1 cumplen |Y'i| " 1.•

6), 7) a12 = (DEFG) " (ABCDE) = DE•

a13 = (DEFG) " (ABDEFG) = DEFG

a21 = (ACE) " (ABDEFG) = AE

a23 = (ACE) " (ABDEFG) = AE

a31 = (BDFG) " (ABDEFG) = BDFG

a32 = (BDFG) " (ABCDE) = BD

8) S1 " a12 = (AB) " (DE) = ABDE•

S2 " a21 = (BD) " (AE) = ABDE M2 = {ABDE}

S3 " A32 = (AE) " (BD) = ABDE

9) 10) a212 = (ACE) " (AB " DE) = AE•

a312 = (BDFG) " (AB " DE) = BD

11) S2 " a212 = BD " AE = ABDE•

S3 " a312 = AE " BD = ABDE

M2 ={ABDE}

12) K1 = ABDE•

22

L2: H ! KL T2 = {H,K,L,M}

KM ! L

K2 = HM

L3: I ! J T3 ={I,J}

K3 = I

CLAVE = K1" K2 " K3 = ABDEHIM.

Ejercicio:

f1: CD ! XY T = {A, B, C, D, E, X, Y}

f2: AX! B L = {f1, f2, f3, f4}

f3: BY ! C

f4: C ! A

Partición funcional.•

Matriz de adyacencia

f1 f2 f3 f4

f1 1 1 1 1

f2 1 1 1 1

f3 1 1 1 1

f4 1 1 1 1

La matriz de conexión es igual a la matriz de adyacencia.

Clases de equivalencia: [f1, f2, f3, f4]

Algoritmo de claves.•

1) Calculo de L +.•

(CD) += ABCDXY (AX) += ABX (BY) += ABCY

(C) += CA

L + A B C D E X Y

CD 1 1 1 1 0 1 1

AX 1 1 0 0 0 1 0

BY 1 1 1 0 0 0 1

C 1 0 1 0 0 0 0

23

2) M1 = �, M1 = �.•

3) M1 = {CDE, ACDEXY, BDEXY, BCDEXY }•

4) No hay ninguna fila que cumpla que |Yi| " 1, y otra que cumpla |Y'j| " 1.•

5) No todas las entradas de M1 cumplen |Y'i| " 1.•

6) 7) a21 = (CDEY) " (CDE) = CDE•

a23 = (CDEY) " (BDEXY) = DEY

a24 = (CDEY) " (BCDEXY) = CDEY

a31 = (DEX) " (CDE) = DE

a32 = (DEX) " (ACDEXY) = DEX

a34 = (DEX) " (CBDEXY) = DEX

a41 = (BDEXY) " (CDE) = DE

a42 = (BDEXY) " (ACDEXY) = DEXY

a43 = (BDEXY) " (BDEXY) = BDEXY

8) S2 " a21 = (AX) " (CDE) = ACDEX•

S2 " a23 = (AX) " (DEY) = ADEXY

S3 " a31 = (BY) " (DE) = BDEY M2 = {ADEX, BDEY, CDE}

S4 " a41 = (C) " (DE) = CDE

9) 10) a323 = (DEX) " (AX " DEY) = DEX•

a423 = (BDEXY) " (AX " DEY) = DEXY

a231 = (CDEY) " (BY " DE) = DEY

a431 = (BDEXY) " (BY " DE) = BDEY

a241 = (CDEY) " (C " DE) = CDE

a341 = (DEX) " (C " DE) = DE

11) S2 " a231 = AX " DEY = ADEXY•

S2 " a241 = AX " CDE = ACDEX

S3 " a341 = BY " BE = BEY

24

S4 " a423 = C " DEXY = CDEXY

S4 " a431 = C " BDEY = CBDEY

M2 = {ADEX, BDEY, CDE}

12) CLAVE = CDE•

Ejercicio:

f1: X ! D T={A, B, C, D, X, Y}

f2: CY! X L={f1, f2, f3, f4, f5}

f3: DY ! C

f4: AX ! B

f5: AY ! C

Partición funcional.•

Matriz de adyacencia

f1 f2 f3 f4 f5

f1 1 1 1 1 0

f2 1 1 1 1 1

f3 1 1 1 0 1

f4 1 1 0 1 1

f5 0 1 1 1 1

Matriz de conexión

f1 f2 f3 f4 f5

f1 1 1 1 1 1*

f2 1 1 1 1 1

f3 1 1 1 1* 1

f4 1 1 1* 1 1

F5 1* 1 1 1 1

* Celda que cambió de 0 a 1.

Clases de equivalencia: [f1, f2, f3, f4, f5]

Algoritmo de claves.•

1) Calculo de L +.•

(X) += XD (CY) += CYXD (DY) += DYCX

25

(AX) += AXBD (AY) += AYCXDB

L + A B C D X Y

X 0 0 0 1 1 0

CY 0 0 1 1 1 1

DY 0 0 1 1 1 1

AX 1 1 0 1 1 0

AY 1 1 1 1 1 1

2) M1 = �, M1 = �.•

3) M1 = {ABCX, ABCY, ABDY, ACXY, AY}•

4) Hay una fila que cumple |Y'i| " 1, pero no hay ningún otra que cumpla |Yj| " 1.•

5) No todas las entradas de M1 cumplen |Y'i| " 1.•

6) 7) a12 = (ABCY) " (CY " AB) = ABCY•

a13 = (ABCY) " (DY " AB) = ABY

a14 = (ABCY) " (AX " CY) = ACY

a15 = (ABCY) " (AY " �) = AY

a21 = (AB) " (X " ABCY) = AB

a23 = (AB) " (DY " AB) =AB

a24 = (AB) " (AX " CY) = A

a25 = (AB) " (AY " �) = A

a31 = (AB) " (X " ABCY) = AB

a32 = (AB) " (CY " AB) = AB

a34 = (AB) " (AX " CY) = A

a35 = (AB) " (AY " �) = A

a41 = (CY) " (X " ABCY) = CY

a42 = (CY) " (CY " AB)= CY

a43 = (CY) " (DY " AB) =Y

a45 = (CY) " (AY " �) = Y

8) S1 " a15 = X " AY = AXY•

26

S2 " a25 = CY " A = ACY M2 = {ACY, ADY, AXY}

S3 " a35 = DY " A = ADY

S4 " a45 =AX " Y = AXY

9) 10) a125 = (ABCY) " (CY " A) = ACY•

a325 = (AB) " (CY " A) = A

a425 = (CY) " (CY " A) = CY

a135 = (ABCY) " (DY " A) = AY

a235 = (AB) " (DY " A) = A

a435 = (CY) " (DY " A) = Y

a145 = (ABCY) " (AX " Y) = AY

a245 = (CY) " (AX " Y) = Y

a345 = (AB) " (AX "Y) = A

11) S1 " a145 = X " AY = AXY•

S2 " a235 = CY " A = ACY

S2 " a245 = CY " Y = CY

S3 " a345 = DY " A = ADY

S4 " a435 = AX " Y = AXY

M2 = {ACY, ADY, AXY}

12) Se copia en M2 los descriptores Si " Y'i con |Y'i| "1, en este caso AY y se borran superconjuntos.•

M2 = {ACY, ADY, AXY, AY}

CLAVE = AY

TEMA 5

ÁLGEBRA RELACIONAL

5.1.− Introducción y definición intuitiva.

5.2.− Sintaxis para el manejo de las expresiones relacionales.

5.3.− Los operadores tradicionales.

27

5.4.− Los operadores relacionales típicos.

5.1.− Introducción

Hasta ahora se han distinguido dos aspectos de las bases de datos: La estructura y el manejo.

Para manejar las estructuras se siguen dos líneas, que son el álgebra relacional y el cálculo relacional.

Álgebra relacional.− El álgebra relacional consiste en un conjunto de operadores de alto nivel que operan
sobre relaciones. Cada uno de estos operadores toma una o dos relaciones como entrada y produce una nueva
relación como salida.

Fue Codd quién en el año 1973 diseñó una serie de operadores que le permitieran trabajar con la estructura
relacional que el mismo había definido. Estos operadores son los siguientes:

Tradicionales ó conjuntistas:•

Unión .•
Intersección.•
Diferencia.•
Producto cartesiano.•

Relacionales ó propios:•

Selección•
Proyección.•
Reunión.•
División•

Los operadores 1, 2, 3, 4, 7 y 8 son binarios, es decir, dadas dos relaciones se obtiene una y los operadores 5
y 6 son monarios, de una relación obtienen otra.

Definición intuitiva.

Unión: Construye una relación formada por todas las tuplas que aparecen en cualquiera de las dos
relaciones especificadas. (UNION)

•

Intersección: Construye una relación formada por aquellas tuplas que aparezcan en las dos relaciones
especificadas, es decir, que tienen los mismos atributos. (INTERSECT)

•

Diferencia: Construye una relación formada por todas las tuplas de la primera relación que no aparezcan en
la segunda de las dos relaciones especificadas. (MINUS)

•

Producto cartesiano: A partir de dos relaciones especificadas, construye una relación que contiene todas
las combinaciones posibles de tuplas, una de cada una de las dos relaciones. (TIMES)

•

Ejemplo:

X Y Z W

a 1 a 3

a 1 a 4

b 2 a 3

b 2 a 4

X Y

28

a 1

b 2

Z W

a 3

a 4

Selección: Extrae las tuplas especificadas de una relación dada, o lo que es lo mismo, restringe la relación
sólo a las tuplas que satisfagan una condición especificada (Selecciona filas).

•

Proyección: Extrae los atributos especificados de una relación dada (Selecciona columnas).•
Reunión: A partir de dos relaciones especificadas, construye una relación que contiene todas las posibles
combinaciones de tuplas, una de cada una de las dos relaciones, tales que las dos tuplas participantes en una
combinación dada satisfagan alguna condición especificada. Las tuplas deben tener algún atributo en
común. Es por esto que las bases de datos deben estar normalizadas. (JOIN)

•

Ejemplo:

X C

a Rojo

b Azul

c Amarillo

X Y C

a 1 Rojo

b 1 Azul

b 2 Azul

b 3 Azul

X Y

a 1

b 1

b 2

b 3

División: toma dos relaciones, una binaria y una unaria, y construye una relación formada por todos los
valores de un atributo de la relación binaria que concuerdan (en el otro atributo) con todos los valores en la
relación.

•

Ejemplo:

Y

1

2

3

X

b

X Y

a 1

29

b 1

b 2

b 3

Sólo ha cogido a b porque tiene asociados a 1, 2 y 3, todos los valores indicados en la tabla Y

5.2.− Sintaxis para el manejo de las expresiones relacionales.

Para definir una sintaxis para el manejo de las expresiones relacionales vamos a utilizar la gramática BNF.
Esta gramática tiene una serie de valores:

Valores terminales: El nombre de la relación, el nombre del atributo y los predicados. Un predicado es una
expresión lógica entre atributos del mismo dominio y que da como resultado verdadero o falso.

•

Va a haber operadores lógicos: (AND, OR, NOT).•
También habrá operadores clásicos (<, <= ,>, >=, =, <>).•

Una gramática BNF para el álgebra relacional es la siguiente:

def_rel ::= DEFINE RELACION nombre_relación [nombre_atributo]•
def_alias ::= DEFINE ALIAS nombre_relación FOR nombre_relación•
expr ::= selección | proyección | expresión infija•
selección ::= primitiva WHERE predicado•
primitiva ::= nombre _ relación | (expr)•
proyección ::= primitiva | primitiva [esp _ atrib]•
esp _ atrib ::= nombre _ atributo | nombre _ relación nombre _ atributo•
expr _ infija ::= proyección op _ infija proyección•
op _ infija ::= UNION, INTERSECT, MINUS, TIMES, JOIN, DIVIDE BY•

5.3.− Los operadores tradicionales.

La unión, la intersección y la diferencia entre relaciones deben de cumplir la relación de compatibilidad.
Esta regla dice que dadas dos relaciones A y B son compatibles para la unión, intersección y diferencia si y
solo si verifican las dos siguientes condiciones:

El grado de A tiene que ser igual al grado de B. Grado(A) = Grado(B)•
Si A tiene atributos a1, a2, ..., an, y B tiene atributos b1, b2, ..., bn, el dominio de cada uno de estos
atributos tienen que ser iguales. A[a1, a2, ..., an] y B[b1, b2, ..., bn] Dom (Ai) = Dom (Bi).

•

El producto cartesiano devuelve una relación que es el resultado de la construcción de dos relaciones. La
unión, intersección y diferencia van a consistir en operar dos conjuntos que verifiquen la relación de
compatibilidad. Los conjuntos que verifiquen esta relación son iguales estructuralmente

Ejemplo: Dadas dos relaciones A y B.

A A1 A2 B B1 B2

X 1 X 1

X 2 Y 2

Y 1 Y 3

30

Y 2 X 4

A UNION B A INTERSECT B A MINUS B B MINUS A

X 1 X 1 X 2 X 4

X 2 Y 2 Y 1 Y 3

X 1

Y 2

Y 3

X 4

El producto cartesiano (TIMES) es cerrado, con lo que obtenemos una relación a partir de otras dos. Siempre
que se hace el producto cartesiano para dos conjuntos con un atributo en común, se le pone siempre delante
del nombre del atributo el nombre de la relación. A TIMES B es una relación / " t " A, r " B, (t, r) " A TIMES
B. El producto cartesiano es asociativo y conmutativo.

Ejemplo:

SP S# P# CTD S S# Noms Estado

S1 P1 300 S1 Sala 20

S2 P1 300 S2 Jara 10

S4 P5 400 S4 Alda 30

SP TIMES S

SP.S# P# CTD S.S# Noms Estado

S1 P1 300 S1 Sala 20

S1 P1 300 S2 Jara 10

S1 P1 300 S4 Alda 30

S2 P1 300 S1 Sala 20

S2 P1 300 S2 Jara 10

S2 P1 300 S4 Alda 30

S4 P5 400 S1 Sala 20

S4 P5 400 S2 Jara 10

S4 P5 400 S4 Alda 30

31

El producto cartesiano tiene un problema cuando se define un producto cartesiano del mismo conjunto ya que
se repetirían el nombre de los atributos, y estos deben de ser únicos. Esto se soluciona definiendo un alias para
la relación.

Ejemplo:

DEFINE ALIAS SP FOR A

SP TIMES A

SP.S# SP.P# SP.CTD A.S# A.P# A.CTD

Siempre que se pide buscar parejas de algo hay que hacer el producto cartesiano de una relación por sí misma.

5.4.− Los operadores relacionales típicos.

WHERE (selección).− Si P es un predicado que se puede construir con los atributos de una relación R,
entonces R WHERE P, es la selección según el predicado P, es decir, se queda con las tuplas de la relación
que hacen cierto el predicado P. (S WHERE P). El predicado P puede ser compuesto mediante los operadores
AND, OR, < ,..., y devuelve verdadero o falso.

Proyección.− Si se tiene una relación R con atributos A1, A2,..., Am, se dice que se ha proyectado R sobre el
conjunto A de atributos A1, A2,..., Am cuando se eliminan de R todas las columnas que no están en el
conjunto A y se eliminan las tuplas repetidas que puedan aparecer.

Ejemplo:

SP S# P# CTD [S#, CTD] S# CTD

S1 P1 300 S1 300

S2 P1 300 S2 300

S1 P2 300 S1 300 * se eliminan tuplas repetidas.

JOIN (Reunión).− Sean A y B dos relaciones y P un predicado que conecta atributos de las dos. Se llama
reunión al resultado de (A TIMES B) WHERE P. Esto recibe el nombre de Reunión (JOIN).

Ejemplo:

SP S# P# CTD S# Estado SP JOIN B S# P# CTD Estado

S1 P1 100 S1 10 S1 P1 100 10

S1 P2 200 S1 P2 200 10

S1 P3 100 S1 P3 100 10

S2 P1 100

La reunión elimina campos en comparación de igualdad de atributos.

32

DIVIDE BY (División).− Sea A una relación de grado m + n y B otra relación de grado n. El operador
división produce una nueva relación de grado m, donde el (m + i)−esimo atributo de A y el i−esimo atributo
de B (i en el rango de 1 a n) deben estar definidos sobre el mismo dominio.

Ejemplo: Proveedores que suministran todas las piezas.

SP [S#, P#] DIVIDE BY S[P#]

SP[S#, P#] S# P# DIVIDE BY S[P#] P# = P#

S1 P1 P1 P1

S1 P2 P2

S2 P3

Encontrar todas las piezas de color rosa:

SP[S#, P#] DIVIDE BY ((P WHERE Color = Rosa)[P#])

TEMA 6

CÁLCULO RELACIONAL

6.1.− Introducción.

6.2.− El cálculo de predicados en Bases de Datos relacionales.

6.3.− El cálculo relacional orientado a tuplas.

6.1.− Introducción.

El álgebra relacional y el cálculo relacional son dos alternativas para establecer una base formal de la parte
manipulativa del modelo relacional. La diferencia entre ellas es la siguiente: mientras que el álgebra ofrece un
conjunto de operaciones explícitas (reunión, unión,...) que pueden servir en la práctica para indicar al sistema
la forma de construir alguna relación deseada a partir de las relaciones dadas en la base de datos, el cálculo
solo ofrece una notación para formular la definición de esa relación deseada en términos de esas relaciones
dadas.

El cálculo solo plantea el problema y el álgebra proporciona un procedimiento para resolver ese problema. En
realidad el álgebra y el cálculo son totalmente equivalentes. Para cada expresión del álgebra, existe una
expresión equivalente en el cálculo; de manera similar para cada expresión del cálculo, existe una expresión
equivalente en el álgebra.

El cálculo relacional se fundamenta en una rama de la lógica matemática llamada cálculo de predicados.

6.2.− El cálculo de predicados en Bases de Datos relacionales.

Una herramienta que permite representar el conocimiento del mundo real es el cálculo de predicados.

El cálculo de predicados consta de los siguientes elementos:

33

Dominio del discurso.− Conjunto de objetos de nuestro mundo con una entidad propia, por ejemplo,
personal, coches,...

•

Objetos.− Son constantes del dominio del discurso, por ejemplo, dentro de personas: Juan, Pepe,
dentro de colores: azul, verde,...

•

Variables.− Representación en un momento dado un objeto del domino. Una variable x tomará algún
valor en un determinado momento, si hablamos de colores x podría tomar en algún momento el azul.

•

Funciones.− Permiten relacionar un dominio con otro, por ejemplo, podemos tener una función padre
que va del dominio personal al dominio persona. Padre (Juan): devolverá el valor del padre de Juan.

•

Predicados.− Son relaciones entre dominios cuya evaluación da como resultado verdadero o falso,
por ejemplo: casado (Juan, María). Mediante los predicados se representan sentencias que se
denominan fórmulas atómicas.

•

Fórmulas atómicas.− Van a tener un valor real, es decir, una función que, dados los argumentos
apropiados, produce un valor falso o verdadero. Se pueden unir distintas fórmulas mediante juntores:

•

AND (")•
OR (")•
NOT (")•
IMPLICA (!)•

Ejemplo: F1 " Escribió (Cervantes, El Quijote) ! (V)

F2 " Nació (Cervantes, Monforte) ! (F).

F1 " F2 ! (V).

F2 " F2 ! (F).

Cualquier conjunto de fórmulas atómicas se llaman fórmulas bien formadas (WFF ó FBF)

Ejemplo: Si suspendo B.D. o me pego un tiro o se lo pego al profesor.

Suspendo (yo, BD) ! Pego (yo, yo) " Pego (yo, profesor).

Suspendo (yo, x) ! Pego (yo, x) " Pego (yo, profesor (x)).

Cuantificadores.− Restringen el valor que puede tomar la variable x. Dicen en que forma es cierta
una fórmula que implica variables. Hay dos tipos de cuantificadores.

•

Cuantificador universal ("x).•
Cuantificador particular ("x).•

Cundo una variable esté cuantificada se le llama variable ligada y cuando una variable no esté cuantificada se
le llama variable libre. Para la representación de las relaciones en término del cálculo de predicados hay dos
formas que son las siguientes:

Cálculo relacional orientado a tuplas.•
Cálculo relacional orientado a dominios.•

6.3.− El cálculo relacional orientado a tuplas.

Las expresiones del cálculo de tuplas se construyen a partir de los elementos siguientes:

34

Variables de tupla T, U, V, Cada variable de tupla se restringe a variar sobre alguna relación con
nombre. Si la variable de tupla T representa a la tupla t, entonces la expresión T.A representa al
componente A de T, donde A es un atributo de la relación sobre la cual varía T.

•

Condiciones de la forma x*y donde * es cualquiera de los símbolos =, <>, <, <=, >, >=, y al menos
una de entre x e y es una expresión de la forma T.A y la otra es una expresión semejante o una
constante.

•

Fórmulas bien formadas: Son la unión de fórmulas atómicas.•

Variables libres y acotadas.− Cada ocurrencia de una variable de tupla dentro de una formula bien formada
es libre ó acotada.

Dentro de una condición, todas las ocurrencias de las variables de tupla son libres.•
Las ocurrencias de las variables de tupla en las fórmulas bien formadas (f), "(f) son libres/acotadas según
sean libres/acotadas en f. Las ocurrencias de las variables de tupla en las fórmulas bien formadas (f " g), (f "
g) son libres/acotadas según sean libres/acotadas en f o en g (cualquiera de las dos en donde aparezcan).

•

Las ocurrencias de T que sean libres en f son acotadas en las fórmulas bien formadas, " (f), "T(f)•

Una expresión del cálculo de tuplas es de la forma T.A, U.B, , V.C [WHERE f] donde T, U, , V son variables
de tupla; A, B, , C son atributos de las relaciones asociadas, y f es una formula bien formada que contiene
exactamente T, U, , V como variables libres. El valor de esta expresión es una proyección del subconjunto del
producto cartesiano T x U x x V para la cual f se evalúa como verdadera.

Sintaxis BNF para cálculo relacional orientado a tuplas.− Ver fotocopia 6.1.

Solución a los ejercicios de álgebra relacional utilizando cálculo relacional.

RANGE OF AX IS ALUMNOS

RANGE OF AY IS ALUMNOS

RANGE OF MX IS MATRICULA

RANGE OF MY IS MATRICULA

RANGE OF SX IS ASIGNATURA

RANGE OF SY IS ASIGNATURA

RANGE OF PX IS PROFESOR

RANGE OF PY IS PROFESOR

MX.AL# WHERE MX.ASIG#=`BD3'•
MX.AL· WHERE " SX(MX.ASIG# = SX.ASIG# " SX.NOMBRE = `BD')•
PX.PR# WHERE " SX(PX.ASIG# = SX.ASIG# " SX.NOMBRE = `EDI')•
SX.NOMBRE, SX.CURSO WHERE " MX(MX.ASIG# = SX.ASIG# " MX.AL#=`Pepito Perez')•
PX.PR# WHERE " MX(MX.ASIG# = PX.ASIG# " MX.AL# = `Pepito Perez')•
MX. AL# WHERE " PX(PX.ASIG# = MX.ASIG# " PX.PR# = `Armando Guerra Segura')•
MX.AL# WHERE " SX(SX.ASIG# = MX.ASIG# " SX.CURSO = `2º')•
MX.AL# WHERE " SX(SX.ASIG# = MX.ASIG# " SX.CURSO = `2º')•

35

MX.AL# WHERE " SX(SX.ASIG#=MX.ASIG# " SX.CURSO=`2º') " ("" SX(SX.ASIG# = MX.ASIG# "
SX.CURSO=2º))

•

AX.AL# WHERE (AX.BECA=`SI' " AX.PROVINCIA<>`Orense')•
AX.AL# WHERE (AX.PROVINCIA<>`Orense') " " MX(MX.AL#=AX.AL#) " " SX(SX.ASIG# =
MX.ASIG# " SX.CURSO = `1º')))

•

AX.AL# WHERE (AX.EDAD>25) " " MX(MX.AL#=AX.AL#) " " SX(SX.ASIG# = MX.ASIG# "
SX.CURSO=`1º')))

•

PX.PR#, PY.PR# WHERE (PX.ASIG#=PY.ASIG# " PX.PR#<>PY.PR#))•
SX.NOMBRE WHERE " MX(MX.ASIG# = SX.ASIG#) " " AX(AX.AL#=MX.AL# "
AX.PROVINCIA=`Pontevedra')))

•

TEMA 7

TEORÍA DE DISEÑO DE BASES DE DATOS RELACIONALES

7.1.− Descomposición de esquemas.

7.2.− Descomposición con la propiedad de unión sin pérdida de información.

7.3.− Test de la propiedad LJ.

7.4.− Descomposición con preservación de dependencias.

7.5.− Algoritmo de Test de preservación de dependencias.

7.6.− Formas Normales basadas en dependencias funcionales.

7.6.1.− Formas Normales de Codd.

7.6.1.1.− Primera Forma Normal.

7.6.1.2.− Segunda Forma Normal.

7.6.1.3.− Tercera Forma Normal.

7.6.2.− Forma Normal de Boyce−Codd

7.7.− Algoritmo de descomposición de Forma Normal de Boyce−Codd con la propiedad LJ.

7.8.− Descomposición en Tercera Forma Normal de Codd con preservación de dependencias.

7.9.− Descomposición en 3ª Forma Normal de Codd con preservación y verificación de la propiedad LJ.

7.1.− Descomposición de esquemas.

Dado un esquema R, con un conjunto de atributos T y un conjunto de dependencias funcionales F se plantea el
problema de que se puede descomponer una serie de proyecciones f = {R1, R2, ..., Rn} de forma que debe
representar la misma información que R.

Esto es interesante para evitar las anomalías que se pueden producir en esquemas grandes. Pueden surgir tres
anomalías de Codd:

36

Anomalías de Inserción.− Se produce una pérdida de información porque no se puede insertar una tupla en
una relación al no conocer el valor de los atributos primarios.

•

• Anomalías de Borrado.− Consiste en una pérdida de información como consecuencia del borrado de una
tupla porque se pierde toda la información de todos sus atributos.

•

• Anomalías de Modificación.− Necesidad de propagar modificaciones debido a un diseño redundante.•

Al proceso de sustitución de un esquema por sus proyecciones se le denomina normalización.

7.2.− Descomposición con la propiedad de unión sin pérdida de información.

Sea f = {R1,..., R2} una descomposición del esquema R, y sea Ri (Ti, Li) la especificación completa del
esquema i−ésimo. Se dice que f es una descomposición con la propiedad de Unión sin pérdida de información
respecto de L si para toda ocurrencia r del esquema R (r ðR) se verifica la siguiente igualdad:

R = R1 [T1] JOIN ... JOIN RK [TK]

La información origen debe ser la misma que la contenida en las extensiones del conjunto Ri de esquemas
resultantes. Esta fórmula indica que si se hace la unión de todas las proyecciones debe de dar el esquema
original. Esto es la llamada propiedad LJ.

7.3.− Test de la propiedad LJ*.

Sea una descomposición de R (T, L) con T={A1, A2,An}, L={x ! y / x " y " T} y f = {R1, ..., R2}. Para
verificar el cumplimiento en f de la propiedad LJ se va a utilizar el siguiente algoritmo:

Se constituye una tabla de k filas y n columnas. La columna j corresponde al atributo Aj y la fila i al esquema
Ri.

En la intersección de ambas se coloca el símbolo aj si el atributo de esa posición pertenece al conjunto de
atributos y el símbolo bij en el caso contrario. Se considera a continuación cada una de las dependencias
funcionales (x!y)ð L. Si se encuentran dos filas que coinciden en las entradas correspondientes a x entonces se
iguala a Y (x = y) de la siguiente manera:

Si un símbolo es aj se hace su homólogo igual a aj.•
Si ambos son del tipo b se igualan los subíndices de uno cualquiera de ellos a los del otro.•

Este proceso se repite hasta que la tabla no varíe. Si finalmente se encuentra al menos una fila de la forma (a1,
a2, a3, , an) la descomposición verifica la propiedad LJ y no la verificará en caso contrario.

Ejemplo: Dado el siguiente esquema R (T, L).

T = {A, B, C, D, E}

L = {A ! C, B ! C, C ! D, DE ! C, CE ! A}

F = {AD, AB, BE, CDE, AE}

B! C A B C D E

AD a1 b12 b13 a4 b15

AB a1 *a2 b13 b24 b25

BE b31*a2 b33 b34 a5

37

CDE b41b12 a3 a4 a5

AE a1 b52 b13 b54 a5

A!C A B C D E

AD *a1 b12 b13 a4 b15

AB *a1 a2 b23 b24 b25

BE b31 a2 b33 b34 a5

CDE b41 b12 a3 a4 a5

AE *a1 b52 b53 b54 a5

DE! C A B C D E

AD a1 b13 b13 a4 b15

AB a1 b13 b13 a4 b25

BE b31 b13 b33 *a4 *a5

CDE b41 a3 a3 *a4 *a5

AE a1 b13 b13 *a4 *a5

C!D A B C D E

AD a1 b12 *b13 a4 b15

AB a1 a2 *b13 b24 b25

BE b31 a2 *b13 b34 a5

CDE b41 b42 a3 a4 a5

AE a1 b52 *b13 b54 a5

A B C D E

AD a1 b12 b13 a4 b15

AB a1 a2 b13 a4 b25

BE a1 a2 a3 a4 a5

CDE a1 b42 a3 a4 a5

AE a1 b52 a3 a4 a5

CE!A A B C D E

AD a1 b12 b13 a4 b15

AB a1 a2 b13 a4 b25

BE b31 a2 *a3 *a4 a5

CDE b41 b42 *a3 *a4 a5

AE a1 b52 *a3 *a4 a5

Al haber una fila que cumple (a1, a2, a3, a4, a5) se verifica la propiedad LJ.

Sea R (T, L). Su descomposición en exactamente dos subesquemas verifica la propiedad LJ se cumple que:

(T1 " T2) ! (T1 − T2) ð L ó (T1 " T2) ! (T2 − T1) ð L +

7.4.− Descomposición con preservación de dependencias.

Para poder realizar la descomposición con preservación de dependencias, el conjunto de dependencias
funcionales de partida debe ser equivalente al conjunto de dependencias de los esquemas funcionales

38

resultantes.

Se parte de un esquema R (T, L) y una descomposición f = {R1, R2, Rk}, L ={x ! y / x " y " T}. Para Ri (Ti,
Li) es la proyección de L.

Ri (Ti, Li), Li ={Xi ! Yi " L+/ X " Y " Ti}. Se cumple la preservación de dependencias si se verifica que

39

