TEMA 1

INTRODUCCION A LAS BASES DE DATOS

1.1.- De los sistemas tradicionales de ficheros a las bases de datos.

1.2.- Definicion de base de datos.

1.3.- Elementos de una base de datos.

1.4.— Dato operativo.

1.5.- Ventajas de las bases de datos frente a los ficheros clasicos.

1.6.—- Independencia de datos.

1.7.- Tipos de bases de datos.

1.1.- De los sistemas tradicionales de ficheros a las bases de datos.

Una de las primeras empresas en desarrollar un lenguaje de programacion orientado a bases de datos fue
CODASYL que sobre los afios 60 desarroll6 el COBOL. Los principales motivos para el paso de los sistems

tradicionales al uso de las bases de datos fueron los siguientes:

» Rapidez al acceso de la informacion.
« Facilidad de trabajo, etc.

1.2.— Definicién de base de datos.

Una base de datos es un sistema de captacion y mantenimiento de registros de forma computerizada. En e
sistema se van a poder realizar las siguientes operaciones: Insercion, borrado y modificacién de un dato.
También se puede hacer modificaciones, borrados e inserciones de informacién en la estructura de la base
datos.

1.3.— Elementos de una base de datos.
En una base de datos se tienen 4 elementos:
« Datos.— Deben cumplir 2 condiciones:

» Deben ser integrados, es decir, recogen toda la informacion intentando que la redundancia sea
minima.
» Deben ser compartidos a nivel de aplicacion.

» Hardware.— Es el soporte fisico que permite almacenar la informacién de la base de datos. Cuando la ba
de datos esta formada por varios sistemas se llama base de datos distribuida. El manejo de las bases de
datos distribuidas se complica ya que se va a necesitar comunicacion entre los sistemas.

» Software.— Permite trabajar y gestionar la base de datos de la forma mas eficiente. EIl SGBD (Sistema
gestor de bases de datos) es el encargado de gestionar la base de datos, y debe ofrecer facilidades para
insercion, borrado y modificacién de la informacién. Por lo tanto, todas las operaciones que se realicen

sobre las mismas han de pasar por el SGBD.
« Usuarios.— Hay tres tipos de usuarios.

« Programadores de aplicaciones.— Se encargan de disefiar y programar las aplicaciones necesarias
para la utilizacion de la bases de datos, realizando las peticiones pertinentes al SGBD.

« Usuario final.— Es la persona que se dedica a trabajar sobre los datos almacenados en la base de
datos. Hay usuarios finales avanzados que por medio del lenguaje de programacion SQL pueden
acceder a los datos.

» Administrador de base de datos.— Es el usuario mas importante de los tres, ya que es el que se
encarga de disefiar y modificar la estructura de la base de datos.

1.4.— Dato operativo*.
Es toda la informacién que necesita una empresa para su funcionamiento. Son las entidades con sus atribu

mas la conexion que hay entre ellas. La integracion de todo lo anterior es el disefio légico de la base de
datos.

Proveedores Proyectos
Piezas Departamentos
Empleados
Ejempilo:

1.5.- Ventajas de las bases de datos frente a los ficheros clasicos.
Las principales ventajas de las bases de datos sobre los ficheros clasicos son las siguientes:

e Compacidad.

» Rapidez de acceso a la informacion.

« Facilidad de trabajo.

* Actualizacion.

 Control centralizado, ostentado por el administrador de la base de datos.
» Reduccion de redundancias.

« Eliminar inconsistencias.

 Los datos pueden compartirse.

* Los estandares se mantienen.

« Mayor seguridad.

« Mayor facilidad en el chequeo de errores.
« Equilibrado de requerimientos opuestos.

1.6.—- Independencia de datos*.

La independencia de los datos es la impunidad de las aplicaciones existentes a cambios en la forma de
almacenamiento y acceso de la base de datos. Se dice que una aplicacion es dependiente de los datos si €
imposible alterar la estructura de almacenamiento o la técnica de acceso sin afectar a la aplicaciéon. En un
sistema de bases de datos no es recomendable tener aplicaciones dependientes de los datos, por dos razc

» Cada aplicacién puede requerir una vista diferente de los mismos datos. Una aplicacion puede requerir Ic
datos en formato decimal y otra puede requerirlos en binario.

« El administrador de la base de datos ha de tener libertad para modificar la estructura de almacenamiento
las técnicas de acceso para adaptarlos al cambio de los requerimientos sin tener que modificar las
aplicaciones ya existentes. Algunas de las modificaciones que podrian ser necesarias seria la adicién de
datos de otro tipo a la base de datos, la aparicién de nuevas normas (€), o0 un cambio de prioridades.

Se va a buscar la independencia de datos a tres niveles:

* Nivel de campo almacenado.— Minima cantidad de informacién que se almacena reconocible con un
nombre.

« Nivel de registro almacenado.— Es un conjunto de campos almacenados relacionados entre si, que cuent
con su propio nombre. Una ocurrencia de registro almacenado es el valor de todos los campos de un
registro (Ej: Color = Azul, Talla = 10, Articulo = Tarnillo)

« Nivel de fichero almacenado.— Es el conjunto de todas las ocurrencias de un tipo de registro almacenado
reconocible con un nombre..

Un registro l6gico es el registro que ve el usuario, y un registro fisico es un registro tal y como se almacena
la base de datos.

El campo logico puede ser igual o no al campo almacenado. Por tanto se puede buscar la independencia d
datos basandose en este concepto, denominado materializacion, que puede ser de dos formas:

« Directa.— El campo légico es igual al campo almacenado.
« Virtual.— El campo l6gico se corresponde con parte o mas del campo almacenado.

Ejempilo:

A nivel de fichero almacenado debe preverse el medio fisico en el que se va almacenar porque una base d
datos es dinamica.

Aspectos de una base de datos susceptibles de modificacion.— Hay que tener mucho cuidado a la hora de
considerar las siguientes cuestiones

» Representacién de datos numéricos (binario, decimal...)

» Representacién de caracteres (ASCII, EBCDIC...)

» Unidades para datos numéricos (Pta., €, ¥, £, $, DM)

* Codificacién de los datos.
La independencia es de los datos es fundamental porque las bases de datos son dinamicas.
1.7.—- Tipos de bases de datos.

Para la implementacién de la base de datos nos vamos a basar en dos estructuras de datos:

 La tabla o array bidimensional, en el que se basa el modelo relacional.
« El grafo en el que se basan el modelo jerarquico (arbol) y el modelo en red (grafo cerrado).

TEMA 2

ARQUITECTURA DE UN SISTEMA DE BASES DE DATOS
2.1.— Niveles generales del sistema.

2.1.1.- Nivel Externo.

2.1.2.— Nivel Conceptual.

2.1.3.— Nivel Interno.

2.1.4.- Correspondencias

2.2.— El Administrador de la Base de Datos.

2.1.— Niveles generales del sistema.

El grupo ANSI / SPARC cre6 un standard para las arquitecturas de las bases de datos. En esta estandarize
se define una arquitectura para los sistemas de bases de datos divida en tres niveles:

Vista 1 Vista 2 Vista n Nivel externo (Vistas individuales de los usuarios).

Nivel conceptual (Vista comunitaria de los usuarios).

Nivel interno. (Vista de la forma de almacenamiento).

En bases de datos pequefias el nivel conceptual y el nivel interno suelen estar unidos.

Ejemplo: En una empresa estan trabajando dos programadores, uno en sobre el lenguaje de programacion

PL/l y el otro en COBOL. En el nivel externo los usuarios van a trabajar sobre la base de datos. Sobre el ni\
conceptual e interno Unicamente trabaja el administrador de la base de datos.

Externo (COBOL)
Externo (PL/I)
01 EMPC Vistas
DCL 1 EMP . 2 EMP# CHAR(6 Externas
. 02 NUMEMP PIC X(6)
3 SAL FIXED BIN(31)
. 02 NUMDEP PIC X(4)
Conceptual
Empleado
numero _ empleado caracter(6) V.
— emp Conceptuales
numero _ departamento caracter(4)
salario numérico(5)
Interno Vista Interna
EMP_ALMAC longitud = 18

Prefijo tipo = byte(6), desplazamiento = 0
EMP# tipo = byte(4), desplazamiento = 6, indice =EMP

DPTO# tipo = byte(4), desplazamiento = 12

Paga tipo = palabra, desplazamiento = 16

2.1.1.— Nivel Externo.

El nivel externo esta formado por las vistas individuales de cada uno de los usuarios, es decir, cdmo percib
usuario la base de datos. Este es el nivel en el cual trabaja el usuario individual. Los usuarios pueden ser o
bien programadores de aplicaciones o usuarios finales, donde cada usuario dispone de un lenguaje. En el ¢
de un programador de aplicaciones dicho lenguaje puede ser un lenguaje de alto nivel para manejar la base
datos y si la base de datos no lo permite, se utilizara un lenguaje propio del sistema de bases de datos (cor
NOMAD 6 FOCUS). En el caso de ser un usuario final serd o bien un lenguaje de consulta, (como el SQL)
algun lenguaje de aplicaciéon basado en menus.

Los lenguajes de programacion deben incluir un sublenguaje de datos (DSL), es decir, un subconjunto del
lenguaje total que se ocupe de manera especifica de los objetos y operaciones de la base de datos. Se dict
el DSL est4 embebido dentro del lenguaje anfitrion correspondiente. En principio, cualquier DSL es en
realidad una combinacién de por lo menos dos lenguajes subordinados:

» DDL. (Lenguaje de definicion de datos).— Con el que es posible definir o declarar los objetos de la
base de datos.

* DML. (Lenguaje de manipulacion de datos).— Con el que es posible manipular o procesar dichos
objetos..

Cuando el DSL es indistinguible del lenguaje anfitrién se dice que esta fuertemente acoplado y si se puedel
separar con nitidez se dice que estan débilmente acoplados. Son preferibles los lenguajes fuertemente
acoplados.

A la vista individual de cada usuario se denomina vista externa. La vista externa esta formada por el conjun
de ocurrencias de los registros externos. Toda vista externa se define mediante un esquema externo que e:
definicion de los tipos de registros externos en esa vista externa. El esquema externo se escribe mediante «
DDL.

2.1.2.— Nivel Conceptual.

Esta formado por la vista comunitaria de los usuarios, es decir, que al unir todas las vistas externas obtenel
toda la informacién. Es la representacion de toda la informacion contenida en la base de datos.

La vista conceptual se compone de las ocurrencias de los diferentes tipos de registro conceptual. Esta viste
define por medio del esquema conceptual, que esta formado por la definicion de cada uno de los tipos de
registro conceptual.

El esquema conceptual se define mediante el DDL conceptual. ElI DDL externo debe ser distinto al DDL
conceptual. Si se logra hacer totalmente independiente el DDL conceptual a los datos, el nivel externo
también lo sera.

En el nivel conceptual no deben aparecer consideraciones sobre el almacenamiento (para tratar de conseg
independencia de los datos). Sin embargo, las definiciones en el esquema conceptual deben incluir

caracteristicas tales como las verificaciones de seguridad y de integridad.
2.1.3.— Nivel Interno.

Esta formado por las vistas del almacenamiento (la forma en que se almacenan los datos). Es una
representacion de bajo nivel de toda la base de datos y se compone de las ocurrencias de los diferentes tip
de registro interno. Esta a un paso del nivel fisico, ya que no gestiona a nivel de paginas o blogues.

La vista interna se define mediante el esquema interno, el cual no sélo define los diversos tipos de registros
almacenados, sino que también especifica que indices hay, la representacion de los campos almacenados,
secuencia fisica de los registros almacenados, etc. El esquema interno se define mediante el DDL interno

2.1.4.—- Correspondencias.
Se distinguen dos tipos de correspondencias que se encargan de conectar los tres niveles de una base de

« Conceptual — Interna.— Permite enlazar la vista conceptual con la base de datos almacenada (vista
interna) y permite representar los registros y campos conceptuales en el nivel interno. Si se modifice
la definicion de la estructura de almacenamiento esta correspondencia debera modificarse también
para que no varie el esquema conceptual. Este tipo de correspondencia permite llevar a cabo el
concepto de independencia de los datos. En el caso de modificacién del nivel interno es esta
correspondencia la que debe verse afectada de manera que los cambios no involucren al nivel
conceptual.

« Externa — Conceptual.— Enlaza las vistas externas con la vista conceptual y permite relacionar los
nombres de los registros y campos externos con los nombres de los registros y campos conceptuale
También se encarga de mantener la correspondencia en el caso de que varios registros 0 campos
conceptuales se correspondan con uno 0 mas registros o campos externos (materializacion).

2.2.— El Administrador de la Base de Datos.
El administrador de la base de datos tiene seis misiones fundamentales:

« Describir el contenido de la informacién en la base de datos, es decir, disefiar el esquema conceptual.
Para esto, primero se mira la informacion que la empresa necesita para su funcionamiento y luego se ha
el disefio légico de la base de datos.

« Decidir sobre la estructura de almacenamiento, es decir, definir el esquema interno por medio del DDL
interno. Va a tener que disefiar la parte fisica de la base de datos (como se representaran los campos, cc
se organizaran los registros, la indexacion, las formas de acceso, la seguridad fisica...). También va a ter
gue disefar la correspondencia conceptual — interna.

» Se encarga de la conexién con los usuarios. Capta la visién externa de cada usuario y luego desarrolla e
esquema externo al que esta asociado. Ademas va a ser el encargado de disefiar la correspondencia ext
— conceptual. También debera crear un entorno amigable para el usuario. Al programador de aplicacione
va a proporcionar ayuda para la implementacién de la vista externa (DDL externo), aunque algunos
sistemas permiten que el programador disefie e implemente su propia correspondencia. Le dara al
programador un lenguaje para la explotacion del esquema externo (DML).

« Tratar los problemas de seguridad e integridad.

« Definir la estrategia de recuperacion de fallos.

* Ocuparse de los problemas de rendimiento (afinamiento).

Pregunta de examen:

A qué equivalen el registro légico y el registro almacenado a nivel de arquitectura?

El registro l6gico se corresponde con el registro externo porgue es lo que percibe el usuario, mientras que ¢
registro almacenado se corresponde con el registro conceptual.

TEMA 3

EL MODELO ENTIDAD — RELACION

3.1.— Conceptos basicos.

3.1.1 Conjuntos de entidades

3.1.2 Conjuntos de relaciones.

3.2.— Cuestiones de disefio.

3.3.— Ligaduras de correspondencias.

3.4.— Claves

3.5.— Diagrama Entidad — Relacion.

3.6.— Conjuntos de entidades débiles.

3.7.— Caracteristicas del modelo Entidad — Relacion extendido.

El modelo Entidad — Relacién esta basado en una descripcién del mundo real formado por dos tipos de
objetos basicos: las entidades y las relaciones entre objetos. Este modelo surge por la necesidad de plasm:
informacién que debe ir en la base de datos y para plasmar la especificacion de informacion que necesita u

empresa.

El modelo Entidad — Relacién pertenece al grupo de modelado semantico que pretende representar el
significado de los datos. EI modelo Entidad — Relacién sirve para crear el esquema conceptual.

3.1 Conceptos basicos
Hay tres conceptos basicos:
« Conjuntos de entidades.
* Atributos.
« Conjuntos de relaciones.
3.1.1 Conjuntos de entidades
Una entidad es un objeto en el mundo real que es distinguible de todos los demas y que posee un conjunto
propiedades (atributos). Va a haber un subconjunto de propiedades cuyos valores van a determinar de una

manera univoca a una entidad, como por ejemplo un campo DNI.

Un conjunto de entidades es la totalidad de entidades del mismo tipo que compartia las mismas propiedade
0 atributos.

Las entidades individuales que constituyen un conjunto se llaman extensiones. Los conjuntos de entidades
tienen por qué ser disjuntos.

Una entidad se representa mediante un conjunto de atributos, que permiten describir propiedades de cada
miembro del conjunto de entidades. Cada atributo tiene un conjunto de valores permitido. Cada conjunto se
llama dominio.

Una base de datos es una coleccion de conjuntos de entidades.
Ejemplo: Conjunto de entidades Cliente y Prestamo_Bancario

Formalmente un atributo de un conjunto de entidades es una funcién que asigna al conjunto de entidades U
dominio. Por tanto, una entidad se puede describir como un conjunto de pares atributo — valor, uno por cad
atributo.

Ejempilo:
CLIENTE: {(Nombre, Santos), (DNI, 3569852), (Calle, C/Amargura), (Ciudad, A Coruia)
En el modelo Entidad — Relaciéon existen distintos modelos de atributos:

« Simples y compuestos.

« Univalorados y multivalorados.
* Nulos.

* Derivados.

« Atributos simples y compuestos.— Los atributos simples son aquellos que no tienen capacidad de
ser descompuestos, mientras que los atributos compuestos son aquellos que permiten descompone
en otros atributos conformando lo que se denominan jerarquias. Un ejemplo de atributo simple
podria ser la edad, mientras que uno compuesto podria ser la direccion de un cliente:

Es conveniente usar atributos compuestos porque facilitan el disefio haciéndolo mas claro y sencilo.

« Atributos univalorados y multivalorados.— Los atributos univalorados son aquellos que sélo
pueden tomar un valor (NombreCliente), mientras que los atributos multivalorados pueden tomar
mas de un valor para un mismo atributo (DirecCliente, NumTIf). Hay que marcar siempre un limite
inferior y un limite superior.

« Atributos nulos.— Un atributo es nulo cuando para una determinada entidad ese atributo no tiene
valor. Se entiende nulo como desconocido. Un atributo nulo es no conocido cuando no se ha
introducido un valor en el campo correspondiente, y esta perdido cuando se produce un error en la
base de datos y el valor se pierde o se corrompe.

« Atributos derivados.— El valor para este atributo se puede derivar de los valores de otros atributos 6
entidades. Por ejemplo, si existe un campo fecha_nacimiento, la edad seria un atributo derivado

3.1.2 Conjuntos de relaciones

Relacién.— Una relacién es una asociacion entre diferentes entidades. Un conjunto de relaciones es una
relacibn matematica con dos o0 mas conjuntos de entidades. Si E1, ..., En son conjuntos de entidades, entol
un conjunto de relacionds {¢€,..e,/¢; E;...e, E,}

donde (el,..., en) es una relacién. La asociacién entre conjuntos de entidades se denomina participacion.

La funcién que desempenfa una entidad en una relacion se denomina papel de la entidad, y es necesario
especificarlo cuando el significado en una relacién necesita aclaracion.

Cuando los conjuntos de entidades que se relacionan son iguales, se denominan conjuntos de entidades
recursivos. Una relacién puede tener asociadas una serie de atributos descriptivos (un nombre).

Al nimero de conjuntos de entidades que participan en un conjunto de relaciones se le denomina grado de
conjunto de relaciones.

3.2 Cuestiones de disefio.

» Uso de conjuntos de entidades 6 atributos.— La utilizacion de conjuntos de entidades o atributos
depende del desarrollo del mundo real que se esté modelando y de la semantica asociada al atribut
considerado.

» Uso de conjuntos de entidades o conjuntos de relaciones.— Se realizara de la siguiente manera: se
debe designar un conjunto de relaciones para describir una accion entre entidades.

3.3 Ligaduras de correspondencias.

Correspondencia de cardinalidad.— Es aquella que expresa el numero de entidades a las que otra entidad
puede estar asociada mediante un conjunto de relaciones, permitiendo describir conjuntos de relaciones
binarias.

Dado un conjunto de relaciones binarias R entre los conjuntos de entidades A y B, la correspondencia de
cardinalidad puede ser:

* De uno a uno.— Se da cuando una entidad en A se asocia con una entidad en B o cuando una entidad er
se asocia con una entidad en A.

» De uno a muchos.— Se da cuando una entidad en A se asocia con cualquier nimero de entidades en By
una entidad en B s6lo se puede asociar con una entidad en A.

« De muchos a uno.- Es el caso inverso al anterior, siendo una entidad en B la que se puede asociar con
cualquier numero de entidades en A y una entidad en A la que solo puede asociarse con una entidad en

* De muchos a muchos.— Cualquier entidad de cualquiera de los dos conjuntos puede asociarse con
cualquier numero de entidades del otro conjunto.

La cardinalidad de una relacién puede afectar a la situacién de los atributos de la relacion. Cuando la
cardinalidad es uno a uno, el atributo descriptivo puede ir en cualquiera de los dos conjuntos. Si es de uno
muchos o de muchos a uno, debera ir en el conjunto de muchos. Y si es de muchos a muchos, debera
permanecer en el conjunto de relaciones.

Dependencias de existencia.— Si la existencia de la entidad X depende de la existencia de la entidad Y, se
dice que X tiene dependencia de existencia de Y. La entidad Y es la entidad dominante y X es la entidad
dominada.

La participacion de un conjunto de entidades E en un conjunto de relaciones R es total si cada entidad en E
participa en al menos una relacién de R. Si solo algunas entidades en E participan en relaciones en R, la
participacién se denomina parcial.

3.4 Claves

Las claves tienen que ser definidas respecto al conjunto de entidades y con respecto al conjunto de relaciol

« Con respecto al conjunto de entidades se definen:

Superclave.— Conjunto de atributos que permiten identificar de manera univoca a cada una de las entidade
del conjunto de entidades. Un ejemplo de esto seria un campo DNI.

Clave Primaria.— Es la clave candidata que es elegida por el disefiador de la base de datos para identificar
cada una de las entidades de un conjunto de entidades.

« Con respecto al conjunto de relaciones se utiliza para distinguir entre las diferentes relaciones de ur
conjunto y se define:

Sea R un conjunto de relaciones que implica a los conjuntos de entidades E1, ..., En. Sea clave primaria (E
el conjunto de atributos que forma la clave primaria para el conjunto de entidades Ei:

Clave Primaria (R) = Clave Primaria (E1) "..." Clave Primaria (En)

La clave primaria del conjunto de relaciones es la unién de las claves primarias de los conjuntos de entidad
sin tener en cuenta los posibles atributos descriptivos del conjunto de relaciones R.

Esta clave primaria se vera afectada por la cardinalidad del conjunto de relaciones de la siguiente manera:

* Muchos a muchos.— Esta formada por la clave primaria de cada uno de los conjuntos de entidades «
R. (K1 " K2).

» Uno a muchos (y viceversa).— Esta formada por la clave primaria del conjunto de entidades que
establece la cardinalidad de muchos. (K1 en uno : muchos y K2 en muchos : 1)

» Uno a uno.— La clave primaria de R esta formada por cualquiera de las claves primarias de los
conjunto de entidades. (K1 6 K2)

3.5 Diagrama Entidad — Relacion

Los diagramas Entidad — Relacion representan la estructura légica de una base de datos de manera grafice
Los simbolos utilizados son los siguientes:

» Rectangulo.— Conjunto de entidades.

* Elipse.— Atributos.

¢ Rombos.- Conjunto de relaciones

« Lineas.— Unen atributos a conjuntos de entidades; unen atributos a conjuntos de relaciones; y unen
conjuntos de entidades con conjuntos de relaciones. Si la flecha tiene punta, en ese sentido esta el
y si no la tiene, en ese sitio esta el muchos. La orientacién sefala cardinalidad.

« Elipse doble.— Se trata de dos elipses concéntricas. Representan atributos multivalorados.

« Elipse discontinua.— Atributos derivados.

« Lineas dobles.- Indican participacion total de un conjunto de entidades en un conjunto de relacione:

» Subrayado.—- Subraya los atributos que forman parte de la clave primaria del conjunto de entidades.

Si el conjunto de relaciones tiene atributos asociados, se le unen a la relacion. En los diagramas Entidad -
Relacién se indican los papeles (roles) mediante etiguetas en las lineas que unen los conjuntos de relacion
con conjuntos de entidades.

Los conjuntos de relaciones no binarias se especifican uniendo al conjunto de relaciones tantas entidades
como margue la relacion. No es recomendable su utilizacién, prefiriéndose el uso de relaciones binarias.

3.6 Conjuntos de entidades débiles.

10

¢ Tiene sentido un conjunto de entidades débiles para cualquier tipo de cardinalidad en un conjunto de
relaciones binario? La respuesta es no. Sélo tiene sentido en el caso uno a muchos.

Se denomina discriminante de un conjunto de entidades, y se representa con un subrayado discontinuo, al
conjunto de entidades que permiten la distincion entre las entidades que dependen de una entidad particule
fuerte. El discriminante de un conjunto de entidades débil se llama clave parcial del conjunto de entidades.

La clave primaria de un conjunto de entidades débil se forma mediante la clave primaria del conjunto de
entidades fuerte mas el discriminante del conjunto de entidades débil.

El conjunto de entidades dominante se denomina propietario del conjunto de entidades débiles que identific

La relacién que asocia al conjunto de entidades débil con un propietario se llama relacién de identificacion
se marca con un doble rombo..

3.7 Disefo de un esquema de bases de datos Entidad — Relacion.

Para un disefio de un esquema de base de datos hay cuatro fases:

 Especificacion de requisitos del usuario.— Consiste en obtener las necesidades de datos de los usuarios |
la base de datos, esto es, sonsacarle al usuario toda la informacion que se desea plasmar en la base de
Esta es la fase que se dara en el examen.

« Disefio conceptual (Entidad — Relacion).

 Especificacion de requisitos funcionales.— Vamos a definir las operaciones que se haran sobre la base de
datos (operaciones permitidas sobre la base de datos)

 Especificacion de requisitos funcionales.— Primero se procede a realizar el disefio l6gico, que consiste en
adaptar el disefio conceptual al sistema de gestion de la base de datos, y a continuacion se realiza el dis
fisico, que consiste en dar todas las caracteristicas de almacenamiento de la base de datos.

TEMA 4

EL MODELO RELACIONAL

4.1.— Elementos del modelo.

4.2.— Esquemas de relacion.

4.3.— Dependencias funcionales.

4.4.- Dependencias transitivas, dependencias parciales, claves.

4.5.— Cierre de un descriptor respecto de un conjunto de dependencias funcionales.

4.6.— Recubrimientos no redundantes.

4.7.— Algoritmo de determinacion de las claves de un esquema.

4.8.- Particion funcional.

4.9.—- Algoritmo de Simplificacion — Reduccidn.

4.10.- Algoritmo de Sintesis

11

4.1.- Elementos del modelo.

Se procedera a definir de una manera formal el método de datos. Todo modelo de datos se compone de tre
partes:

 Parte estructural.— Se encarga de definir las estructuras de datos que sirven como base para el modelo &
realizar.

« Parte manipulativa.— Es el conjunto de operadores que se van a tener para manejar la estructura de dato
poder trabajar con el modelo.

» Parte semantica.— Viene dada por las restricciones semanticas y las reglas de integridad. Marca el
conjunto de restricciones que debe verificar el modelo

Parte estructural.
En el modelo de datos relacional la estructura de datos es la relacién. La relacion es un subconjunto del

producto cartesiano de dominio. Se van a definir atributos para cada uno de esos dominios y las filas se
denominan tuplas.

Al |A2 |[... |An
all (al2 |... |aln
a2l |[a22 |... |a2n
aml [am2 (... |amn

El subindice de cada columna marca el grado de la relacién, mientras que los subindices de los elementos
la tabla indican su cardinalidad. En estas tablas m marca el nimero de tuplas, y n el de atributos. Como la |
de datos es dinamica el valor de m no se va a mantener constante. El dominio es el rango de valores que
puede alcanzar un atributo, o lo que es lo mismo, a cada uso particular de un dominio en una relacion se le
llama atributo.

(A" Dom(A)), r" Dom(Al) x Dom(A2) X ... x Dom(An).

Los dominios de dos 0 mas atributos diferentes pueden ser coincidentes pero los nombres de su atributo
asociado tienen que ser diferentes.

Una de las caracteristicas mas importantes es que se pueden tratar como conjuntos y por ello el orden de I
atributos y de las tuplas es indiferente.

Parte manipulativa

Se van a tener los operadores del algebra relacional que nos daran los operadores necesarios para maneje
estructura. El SQL es una extension del algebra.

Parte semantica
Clave primaria.— Conjunto minimo de atributos cuyo valor determina el de todos los demas de la relacion.
Cada relacién va a tener una clave primaria y los dominios sobre los que se selecciona esta clave se llama

dominios primarios.

Clave externa.— También denominada externa o foranea. Se utiliza para enlazar relaciones y se define de |
siguiente manera: es el atributo o conjunto de atributos que forma parte de la clave primaria de una relacior

12

y que aparece como clave primaria de otra relacion s.
La parte semantica esta formada por dos reglas de integridad:

Reglas de integridad (de entidad).— Ningun valor de la clave primaria de una relacién puede ser o contener
algun componente nulo (desconocido).

Reglas de integridad referencial.— Sea un atributo A de una clave primaria compuesta (mas de un atributo)
de una relacion r, que esta definido sobre un dominio primario. Entonces para cada valor a de A tiene que
existir una relacion s con clave primaria simple (b) tal que a ocurre como un valor de b en s.

Ejemplo.— S# P# CTD S# NomS Estado Ciudad

S1P1100S1X10L

S1P220aS2Y20M

aS2P330S3B30P

S2P440S4X40S

S3P530S5Y10L

4.2.— Esquemas de relacion.

Dos ocurrencias rl y r2 que pertenecen a T (conjunto de atributos) verifican el mismo conjunto de reglas de
integridad, que vamos a llamar L y que estara formado por las reglas de integridad entidad y referencial y p
todas las restricciones que permiten definir la semantica del problema.

El esquema de relacién es el par formado por T y L. A cualquier subconjunto de T se le llama descriptor.
4.3.— Dependencias funcionales.

Sea x ! y una dependencia funcional (x, y " T). Se dice que y depende de x six !y " L., esto quiere decir, qu
para toda ocurrencia de r " R(T, L), siendo x e y subconjuntos de T el valor de x determina univocamente al

valor de y.

Dada una relacion R, el atributo Y de R depende funcionalmente del atributo X de R si y sélo si, siempre qu
dos tuplas de R concuerden en su valor de X, deben por fuerza concordar en su valor de Y.

Ejemplo: Ver figura 4.1.

D.F. de S: S#! NOMS. D.F. de P: P# ! NOMP. D.F. de SP: S#, P#! CTD.
S# 1 ESTADO. P#! COLOR.

S# | CIUDAD. P# ! PESO.

ESTADO ! CIUDAD. P# ! CIUDAD.

El conjunto L esta formado por todas las dependencias funcionales del problema. Entonces dado el conjunt
siempre se pueden deducir otras dependencias funcionales a partir de él, esto es lo que se llama el conjunt

13

+ que se denomina cierre de L.
L + se calcula en base a los axiomas de Armstrong:

» Reflexividad.— Para todo descriptor x, se deduce que x depende de si mismo. ("x, x ! X).
« Aumentatividad.— Si y depende de X, entonces y depende de x' siendo x' un superconjunto de x.

(x!'y!xly, x'"x).

 Proyectividad.— Si y depende de x, entonces y' depende de x, siendo y' un subconjunto dey.

xly!xly,y'"y).

 Aditividad.— Si y depende de x y si w depende de u entonces y unido con w depende de x unido con u. (X
y,ulwix"uly"w).
 Transitividad.— xly, ylz ! x ! z.

4.4.- Dependencias transitivas, dependencias parciales, claves.

Se va a definir una dependencia transitiva entre dos descriptores (x e y) de la siguiente forma: xly x "y = ,
x"z=,"z"Tysecumple que zdependedex:x!zyz!ydz!ly.

Ejemplo.— S# ! Estado. S# ! Ciudad. Existe una dependencia transitiva entre
Estado ! Ciudad. Proveedor (S#) y Ciudad

Se va a decir que la dependencia x ! y es parcial si existe un x' subconjunto de x, tal que y depende de Xx'. (;
y parcial I " X" " x/x'1y).

Ejemplo.— AB ! C Es una dependencia parcial, ya que hay un subconjunto de AB B ! C del que depende C.

Se va a decir que la dependencia x ! y es total si no existe ningun subconjunto de x del cual dependay. (x !
total'no" x' " x/x'1y).

Clave de un esquema.— Se dice que un descriptor K, subconjunto propio del conjunto de atributos (K" T) et
clave del esquema R (T, L) cuando se cumple x T 6 (K! T) " L+, y no hay ninglin subconjunto propio de K
con la misma propiedad.

Un mismo esquema puede tener mas de una clave. Los atributos que pertenecen a la clave se llaman atrib
principales. Los atributos que no pertenecen a la clave se llaman atributos no principales.

4.5.— Cierre de un descriptor respecto de un conjunto de dependencias funcionales.

Sea un X un descriptor, siendo X subconjunto propio de T (X" T) y L un conjunto de dependencias
funcionales. Cierre de X (que vamos a llamar X+) respecto al conjunto de dependencias funcionales L es ul
descriptor que cumple (X ! X+) " L+ y ademas X+ es maximo.

Ejemplo.- X'!Y, B

X 1Z Cierre de X (X+) es el conjunto de valores identificados por X.

Y!B

14

El algoritmo para calcular el cierre de X es el siguiente:

Determinar el descriptor X(i) con la propiedad (X ! X(i)) " L+ y de forma que X(i) es X(i-1) incrementando
en los atributos Ak tales que (U'V) " L, U " X(i-1) y Au " V, partiendo de X(0) = 0.

Ejempilo:

X 1Y X(0) = X
X1ZX@1)=X,Y
Y!IBX@2)=X,Y,ZB

Es un proceso finito ya que T también lo es y X+ es maximo ya que van a estar todos los atributos que
dependen de X.

Ejemplo: Calcular el cierre del conjunto de atributos (BD)+ respecto al siguiente conjunto de dependencias
funcionales:

AB ! CBE ! C X(0) =BD

C!ACG!BD X(1) =BDEG

BC! D CE! AG X(2) = BDEGC

ACD !B X(3) = BDEGCA

D!EG

4.6.— Recubrimientos no redundantes.

Dos conjuntos con dependencias funcionales L y M son equivalentes si y solo si sus cierres son iguales. Es

vaaocurrirsiysolosif(x!y)"L+estaen M+y f(u!v) "M+ estaen L +. También se dice que L recubre a

My que M recubre a L.

La tarea de calcular el cierre de L es muy complicada, por lo tanto para saber si la dependencia X!Y que

pertenece a L esta en M+ calculamos el cierre de X (X+) respecto a M ya que si se cumple (X!X+) " M

entoncessiY " X+ ! XY " M+.

Condiciones que debe cumplir un conjunto de dependencias funcionales para no ser redundante:

» Que todas las dependencias tengan su segundo miembro simple (formado por un Unico atributo): (X Ai) (
= segundos miembros simples).

* Que no haya dependencias funcionales redundantes. Una dependencia XAi " M es redundante en M cua
su supresién no altera el cierre. (M — XAi)+ = M+,

« No hay atributos extrafios. Una atributo Bi " X es extrafio en la dependencia funcional X!Ai que pertenece
M cuando llamando Z al descriptor X — {Bi} el cierre de M no se altera al sustituir X!Ai por Z! Ai. M -

{XTAI}"{Z!Ai}+ = M+. Sélo hay atributos extrafios en miembros compuestos.

Pregunta de Examen.- ¢ Es posible que partiendo de un mismo conjunto de dependencias funcionales exis
més de un recubrimiento no redundante?

15

Si, porque depende del orden en que lo hagamos. Pueden ser encontrados diferentes recubrimientos no
redundantes, todos ellos equivalentes.

Dado un conjunto L de dependencias funcionales siempre va a existir un subconjunto equivalente M no
redundante que sera como minimo igual a L.

El algoritmo para calcular el conjunto M va a contener tres pasos:

» Para toda dependencia X!Y de L se sustituye por XIAl, XIA2, ..., X!Ak, siendo Al, A2,.., Ak atributos de
Y. Al conjunto resultante se le llama L (1).

Ejemplo: A'BCD!A!B,A!C, Al D.

» Para toda dependencia X ! Ai de L (1) determinamos el cierre de X respecto de L (1) — {X ! Ai}. Si Ai
pertenece a X+ quiere decir que la dependencia X ! Ak es redundante en L (1) y se elimina. (Si Ak " X+ !
I Ak es redundante y se elimina). Al conjunto resultante se le llama L (2).

» Para toda dependencia X ! Ai de L (2), si Bi es un atributo de X (Bi "X) y siendo Z = X —{Bi} se calcula el
cierre de Z respecto de L (2). Si Ai " Z, esto quiere decir que (Z! Ai) " L (2)+, de modo que la sustitucién
de X ! Ai por Z ! Ai conduce a un conjunto equivalente.

El conjunto resultante se va a llamar L (3). Se tiene que L (3) = M.

Ejemplo de calculo del recubrimiento no redundante de:

L:

AB!CACD!BCG!BD

C!ADIEGCE!AG

BC!DBE!C

e Calculo de L (1):

AB!C

ClA

BC!D

ACD !B Eliminado el paso d)

DIE

DIG

BE!C

CG!B

CG ! D Eliminado en el paso i)

16

CE ! A Eliminado en el paso j)
CE!G

e Calculo de L (2).
«AB!C, (AB)+respectode L (1) -{AB!C}=AB

Como C " AB, AB ! C no es redundante.
*C!'A,(C)+respectode L (1)-{C!'A}=C

Como A" C, C! A no es redundante.

«BC!D, (BC)+respectode L (1) -{BC! D} =BCA

Como D "BCA, BC ! D no es redundante.

« ACD ! B, (ACD)+ respecto de L (1) - {ACD ! B} = ACDEGB

Como B " ACDEGB, ACD ! B es redundante y se elimina.
«D!E,(D)+respectodeL (1) -{D!E}=DG

Como E " DG, D ! E no es redundante.

D!G, (D)+respectode L (1) -{D! G} =DE

Como G " DE, D! G no es redundante.

«BE!C, (BE)+respectode L (1) -{BE!C}=BE
Como C " BE, BE ! C no es redundante.

«CG!B, (CG)+respectode L (1) - {CG ! B} = CGADE
Como B " CGADE, CG ! B no es redundante.

« CG!D, (CG)+respectode L (1) - {CG ! D} =CGABD
Como D " CGABD, CG ! D es redundante y se elimina.
«CE!'A, (CE)+respectode L (1) -{CE! A} =CEA
Como A" CEA, CE ! A es redundante y se elimina.
*CE!G, (CE)t+respectode L (1) -{CE!G}=CEA
Como G " CEA, CE ! G no es redundante.

El conjunto resultado L (2) es el siguiente:

AB!CD!/ECG!B

17

C!IAD!GCE!G
BCIDBE!C

« El Unico atributo no compuesto subconjunto de algun atributo compuesto es C, se calcula el cierre de C, |
= CA, como no se puede obtener otro a partir de este el conjunto L (3) es el mismo que L (2) .

4.7.— Algoritmo de determinacion de las claves de un esquema.

Este algoritmo determina todas las claves del esquema. Dado un esquema de relacion R y un conjunto de
atributos y otro de dependencias funcionales donde Si van a ser los implicantes de la dependenciay Si " Sj

R(T,L)L={(Si X}
Si"S),Si"Xj= "

Ahora se hace la matriz de implicacion que representa al conjunto de dependencias funcionales L.
Atributos de T

Al A2 An

Implicantes S1

de cada una S2

de las S3

dependencias

funcionales Sm

La matriz se rellena de la siguiente forma; cada posicion de la matriz va a tomar el valor: 1 si Aj pertenece ¢
(Si" Xj) y tomara el valor 0 si Aj no pertenece a (Si " Xj).

1siAj" (Si"Xj)
Es decir: lij :
0siAj"(Si" X))
Ejemplo:
AB!C

Si AC! D Xj
BIA

Matriz de implicacion:

AB |1 [0 (1 |1

18

AC |1 [0 1 |1
B |1 |1 |0 [0

Una vez calculada la matriz hay que calcular el cierre de L. Se calcula mediante el algoritmo del cierre
transitivo de L.

ALGORITMO PARA EL CALCULO DEL CIERRE DE L:
L+=L

DO UNTIL L + no cambie mas

"Si"SjenL+,si"Ak" Sjlin=1

Copiar todas las entradas 'I' de la fila Si

en los lugares homalogos de la fina Si.

END DO

END.

Otro método para el calculo del cierre de L es el siguiente:

L+={S Y.

, Todos los atributos que estana 1 de L +.

Los 0 son todos aquellos descriptores de la forma T — (Si " Yi) = Y'i.

Ejemplo: (AB)+ =ABCDL+ABCD

(AC)+=ACDAB1111

(B)+=ABCDAC1011

B1111

Nomenclatura:

Si ! Implicantes. Y'i ! Ceros Yi! Unos |x| n° de atributos de X.

ALGORITMO DE CLAVES: (Ver folio 4.1.).

4.8.- Particién funcional *.

La particién funcional permite reducir los tamafios de las matrices en el algoritmo de célculo de claves, por
tanto va a haber un menor consumo de memoria con una ganancia de rapidez, para ello se van a buscar la

clases de equivalencia de las dependencias funcionales.

Descompone un esquema de relaciones en subesquemas, y se basa en el concepto de relacion de equivals

19

La relacién de equivalencia cumple las propiedades reflexiva, simétrica y transitiva, y permite particionar un
concurso.

Seal:S. X}
y Si" Sj, paratodoi"j,y Sj!Xi

Sifi"Si!Xifi"Sj!Xj

Se va a definir una relacion de adyacencia (R) de forma que:

fi esta relacionado con fjsiy sélo si (Si" Xi) " (Sj" Xj)" 0

fi no esta relacionado con fjsiy sélo si (Si" Xi) " (Sj" X)) =0

Esta relacion es reflexiva y simétrica. A partir de esta relacion se va a definir otra relacion denominada
relacién de conexion (") de forma que fi " fj si y sélo si fi esté relacionado con fj. La relacion de conexion
también es transitiva. En esta relacién, si dos fi son adyacentes se conectan, y si no, habra que buscar un
camino entre ellas.

A partir de esto se definen las clases de equivalencia:

fiRf(Ki)i=1

fi R fKj R f(Kj) ... R F(Ki).

La matriz de adyacencia va a estar formada por el conjunto de dependencias funcionales. Esta matriz tamb
es llamada matriz de conexion y representa la relacion de conexion.

f1f2..12
fl
f2 .

~ Isif; f

" ()enotrocaso
fn
Ejemplo:
fl1: AB!C
f22.B!D
f3:E!F

fl [f2 |f3
f1 |1 (1 |0
f2 |1 (1 |0
f3 [0 [0 |1
Ejercicio:

20

Dado el esquema R (T, L)
T={A,B,C,D,F,G,H,I,J,K,L,M}
L={f1, f2, 13, f4, {5, {6}

fl1: AB!C

f2: H! KL

f3: BD ! FG

f4: AE!C

f5: KM I'L

f6: 113

« Se parte de un recubrimiento no redundante.
* Calculo de claves.

 Particién funcional.

Matriz de adyacencia

fl |f2 |f3 |f4 |5 [F6
f 1 10 |1 |1 [0 |0
f2 0 |1 |0 [0 (1 |0
f3 (1L |0 |2 [0 [0 |0
f4 (1 |0 |0 [1 [0 |0
f5 0 |1 |0 [0 (1 |0
f6 0 |0 |0 [0 [0 |1

Matriz de conexion.

fl [f2 [f3 |f4 |5 |[f6
f. 1 |0 |2 (1 [0 |0
f2 0 |1 |0 [0 (1 |0
f3 (1 |0 |2 [1* [0 |O
f4 (1 |0 |1*[1 [0 |0
f5 0 |1 |0 [0 (1 |O
f6 |0 |0 |0 [0 [0 |1

* Celda que cambi6 de 0 a 1.

Clases de equivalencia.— Hay que encontrar filas de unos y ceros que se repitan y estas forman una clase
equivalencia:

[f1, 13, f4] , [2, 5] , [f6]

21

« Algoritmo de claves (Para cada clase de equivalencia).
¢ 1) Calculo de L +.

L1: AB!C T1={A,B,C,D,E,F,G} (AB)+ = ABC

BD ! FG (BD) + = BDFG

AE ! C (AE) + = AEC

L+ [A B |[c Ip |[E F [
AB |1 |1 |1 o Jo o o
BD o [1 o |t o |1 |1
AE |1 Jo |1 o |1 Jo o
«e2)Ml=,M2=.

» 3) M1 = {ABDEFG, ABCDE, ABDEFG}
 4) No hay ninguna fila que cumpla que |Yi| " 1, y otra que cumpla |Y'j| " 1.
* 5) No todas las entradas de M1 cumplen |Y'i| " 1.
« 6), 7) al2 = (DEFG) " (ABCDE) = DE
al3 = (DEFG) " (ABDEFG) = DEFG
a21 = (ACE) " (ABDEFG) = AE
a23 = (ACE) " (ABDEFG) = AE
a3l = (BDFG) " (ABDEFG) = BDFG
a32 = (BDFG) " (ABCDE) = BD
+ 8)S1"al2 = (AB) " (DE) = ABDE
S2 " a21 = (BD) " (AE) = ABDE M2 = {ABDE}
S3 " A32 = (AE) " (BD) = ABDE
« 9) 10) a212 = (ACE) " (AB " DE) = AE
a312 = (BDFG) " (AB " DE) = BD
*11) S2"a212 =BD " AE = ABDE
S3"a312 = AE " BD = ABDE
M2 ={ABDE}

» 12) K1 = ABDE
22

L2: H! KL T2 = {H,K,L,M}
KM!L
K2 = HM
L3: 113 T3={1,J}
K3 =1
CLAVE = K1" K2 " K3 = ABDEHIM.
Ejercicio:
fl: CD!'XYT={A,B,C,D,E X, Y}
f2: AX! B L = {f1, f2, 3, f4}
f3:BY!C
f4:C1A
* Particion funcional.

Matriz de adyacencia

fl [f2 |f3 |f4
f1 11 |1 |1 |1
2 11 11 |1 |1
311 |11 |1 |1
f4 11 11 |1 |1

La matriz de conexidn es igual a la matriz de adyacencia.
Clases de equivalencia: [f1, f2, f3, f4]

« Algoritmo de claves.

e 1) Calculode L +.

(CD) += ABCDXY (AX) += ABX (BY) += ABCY

(C) += CA

L+ |A B |lc D [E [X |v
co |t 1t |r Jofrfa
AX |1 1 Jo o o 1 o
BY [|1 |1 o [0 [o |
c |1 ot o o |o |o

«2)M1l= ,Ml=.
* 3) M1 = {CDE, ACDEXY, BDEXY, BCDEXY }
* 4) No hay ninguna fila que cumpla que |Yi| " 1, y otra que cumpla |Y'j| " 1.
* 5) No todas las entradas de M1 cumplen |Y'i| " 1.
« 6) 7) a21 = (CDEY) " (CDE) = CDE
a23 = (CDEY) " (BDEXY) = DEY
a24 = (CDEY) " (BCDEXY) = CDEY
a3l = (DEX) " (CDE) = DE
a32 = (DEX) " (ACDEXY) = DEX
a34 = (DEX) " (CBDEXY) = DEX
a41 = (BDEXY) " (CDE) = DE
a42 = (BDEXY) " (ACDEXY) = DEXY
a43 = (BDEXY) " (BDEXY) = BDEXY
« 8) S2 " a21 = (AX) " (CDE) = ACDEX
S2 " a23 = (AX) " (DEY) = ADEXY
S3" a3l = (BY) " (DE) = BDEY M2 = {ADEX, BDEY, CDE}
S4 " a41 = (C) " (DE) = CDE
« 9) 10) a323 = (DEX) " (AX " DEY) = DEX
a423 = (BDEXY) " (AX " DEY) = DEXY
a231 = (CDEY) " (BY " DE) = DEY
a431 = (BDEXY) " (BY " DE) = BDEY
a241 = (CDEY) " (C " DE) = CDE
a341 = (DEX) " (C " DE) = DE
¢ 11) S2 " a231 = AX " DEY = ADEXY
S2 " a241 = AX" CDE = ACDEX

S3"a341 =BY " BE =BEY

24

S4 " a423 = C " DEXY = CDEXY
S4 " a431 =C " BDEY = CBDEY
M2 = {ADEX, BDEY, CDE}

» 12) CLAVE = CDE
Ejercicio:
f1: X I D T={A, B, C, D, X, Y}
f2: CY! X L={f1, f2, {3, f4, f5}
f3:DY!C
f4: AX1B
f5:AY!IC

* Particion funcional.

Matriz de adyacencia

fl |f2 |f3 |4 |f5
f (1 |1 |2 (1 |0
2 11 |1 1 1 |1
3 11 |1 (1 |0 |1
f4 11 (1 [0 |1 |1
f5 10 |1 1 |1 |1

Matriz de conexioén

fl [f2 |[f3 |f4 |5
1 (1 |1 |1 (1 |1*
2 1 |11 1 1 |1
3 (1 |1 |1 [1* |1
4 (1 |11 |1 1 |1
F5 [1* |11 |1 |1 |1

* Celda que cambi6 de 0 a 1.

Clases de equivalencia: [f1, f2, f3, f4, f5]
* Algoritmo de claves.
e 1) Calculode L +.

(X) += XD (CY) += CYXD (DY) += DYCX

(AX) += AXBD (AY) += AYCXDB

L+ |A B |[c [p |x |v
X o o JoJt |t o
cy o o 1 1 1 2
DY [0 o |1 |1 |1 |1
AX |1 |1 Jo |t |1 o
L O O A A A
«2)Ml=,Ml=.

« 3) M1 = {ABCX, ABCY, ABDY, ACXY, AY}
 4) Hay una fila que cumple |Y'i| " 1, pero no hay ningun otra que cumpla |Yj| " 1.
* 5) No todas las entradas de M1 cumplen |Y'i| " 1.
« 6) 7) al2 = (ABCY) " (CY " AB) = ABCY

al3 = (ABCY) " (DY " AB) = ABY

al4 = (ABCY) " (AX " CY) = ACY

al5 = (ABCY) " (AY ") = AY

a21 = (AB) " (X " ABCY) = AB

a23 = (AB) " (DY " AB) =AB

a24 = (AB) " (AX " CY) = A

a25=(AB)" (AY")= A

a3l = (AB)" (X " ABCY) = AB

a32 = (AB) " (CY " AB) = AB

a34 = (AB) " (AX " CY) = A

a35=(AB)" (AY")= A

a4l = (CY)" (X " ABCY) = CY

a42 = (CY) " (CY " AB)= CY

a43 = (CY) " (DY " AB) =Y

a45=(CY)" (AY") =Y

* 8)S1"al5=X"AY = AXY

26

S2"a25=CY"A=ACY M2 = {ACY, ADY, AXY}
S3"a35=DY " A=ADY
S4"ad5 =AX"Y = AXY
« 9) 10) a125 = (ABCY) " (CY " A) = ACY
a325=(AB)" (CY"A) = A
a425 = (CY) " (CY " A) = CY
al35 = (ABCY) " (DY " A) = AY
a235 = (AB) " (DY "A) = A
a435=(CY)" (DY "A) =Y
al4s = (ABCY) " (AX " Y) = AY
a245 = (CY) " (AX"Y) =Y
a345 = (AB) " (AX"Y) = A
¢ 11) S1"al45 =X " AY = AXY
S2"a235=CY"A=ACY
S2"a245=CY"Y =CY
S3"a345=DY " A=ADY
S4"a435=AX"Y = AXY
M2 = {ACY, ADY, AXY}
» 12) Se copia en M2 los descriptores Si " Y'i con |Y'i] "1, en este caso AY y se borran superconjuntos
M2 = {ACY, ADY, AXY, AY}
CLAVE = AY
TEMA 5
ALGEBRA RELACIONAL
5.1.- Introduccidn y definicidn intuitiva.
5.2.- Sintaxis para el manejo de las expresiones relacionales.

5.3.— Los operadores tradicionales.

27

5.4.—- Los operadores relacionales tipicos.

5.1.- Introduccién

Hasta ahora se han distinguido dos aspectos de las bases de datos: La estructura y el manejo.

Para manejar las estructuras se siguen dos lineas, que son el algebra relacional y el calculo relacional.

Algebra relacional.— El algebra relacional consiste en un conjunto de operadores de alto nivel que operan
sobre relaciones. Cada uno de estos operadores toma una o dos relaciones como entrada y produce una n
relacion como salida.

Fue Codd quién en el afio 1973 disefié una serie de operadores que le permitieran trabajar con la estructur
relacional que el mismo habia definido. Estos operadores son los siguientes:

« Tradicionales 6 conjuntistas:

* Unién ..

* Interseccion.

« Diferencia.

* Producto cartesiano.

» Relacionales 6 propios:

» Seleccién
 Proyeccion.
* Reunién.

* Division

Los operadores 1, 2, 3, 4, 7 y 8 son binarios, es decir, dadas dos relaciones se obtiene una y los operadore
y 6 son monarios, de una relacién obtienen otra.

Definicién intuitiva.

» Unién: Construye una relacion formada por todas las tuplas que aparecen en cualquiera de las dos
relaciones especificadas. (UNION)

* Interseccion: Construye una relacion formada por aquellas tuplas que aparezcan en las dos relaciones
especificadas, es decir, que tienen los mismos atributos. (INTERSECT)

« Diferencia: Construye una relacién formada por todas las tuplas de la primera relaciéon que no aparezcan
la segunda de las dos relaciones especificadas. (MINUS)

» Producto cartesiano: A partir de dos relaciones especificadas, construye una relacion que contiene todas
las combinaciones posibles de tuplas, una de cada una de las dos relaciones. (TIMES)

Ejempilo:

X Y Z W
a 1 a |3
a 1 a (4
b 2 a |3
b 2 a |4
X Iy |

28

O (O (N|(T (D
-booél\)l—‘

 Seleccién: Extrae las tuplas especificadas de una relacién dada, o lo que es lo mismo, restringe la relacic
s6lo a las tuplas que satisfagan una condicién especificada (Selecciona filas).

 Proyeccidn: Extrae los atributos especificados de una relacién dada (Selecciona columnas).

» Reunion: A partir de dos relaciones especificadas, construye una relacion que contiene todas las posibles
combinaciones de tuplas, una de cada una de las dos relaciones, tales que las dos tuplas participantes e
combinacién dada satisfagan alguna condicién especificada. Las tuplas deben tener algan atributo en
comun. Es por esto que las bases de datos deben estar normalizadas. (JOIN)

Ejemplo:

X C

a Rojo

b Azul

C Amarillo

X Y C

a 1 Rojo
b 1 Azul
b 2 Azul
b 3 Azul
X |y

a |1

b |1

b |2

b |3

« Divisién: toma dos relaciones, una binaria y una unaria, y construye una relacién formada por todos los
valores de un atributo de la relacién binaria que concuerdan (en el otro atributo) con todos los valores en
relacion.

Ejemplo:

FPl<|T|X[|[®[N[F (<

29

b |1
b |2
b |3

Soélo ha cogido a b porque tiene asociados a 1, 2 y 3, todos los valores indicados en la tabla Y
5.2.- Sintaxis para el manejo de las expresiones relacionales.

Para definir una sintaxis para el manejo de las expresiones relacionales vamos a utilizar la gramatica BNF.
Esta gramatica tiene una serie de valores:

« Valores terminales: El nombre de la relacién, el nombre del atributo y los predicados. Un predicado es un
expresion légica entre atributos del mismo dominio y que da como resultado verdadero o falso.

 Va a haber operadores légicos: (AND, OR, NOT).

» También habra operadores clasicos (<, <= ,>, >=, =, <>).

Una gramatica BNF para el algebra relacional es la siguiente:

« def_rel ::= DEFINE RELACION nombre_relacion [nombre_atributo]

« def_alias ::= DEFINE ALIAS nombre_relacion FOR nombre_relacion

» expr ::= seleccion | proyeccion | expresion infija

« seleccion ::= primitiva WHERE predicado

e primitiva ::= nombre _ relacién | (expr)

* proyeccion ::= primitiva | primitiva [esp _ atrib]

e esp _ atrib ::= nombre _ atributo | nombre _ relacién nombre _ atributo
e expr _ infija ::= proyeccién op _ infija proyecciéon

 op _infija ::= UNION, INTERSECT, MINUS, TIMES, JOIN, DIVIDE BY

5.3.— Los operadores tradicionales.

La union, la interseccion y la diferencia entre relaciones deben de cumplir la relacion de compatibilidad.

Esta regla dice que dadas dos relaciones A y B son compatibles para la union, interseccién y diferencia si y

solo si verifican las dos siguientes condiciones:

« El grado de A tiene que ser igual al grado de B. Grado(A) = Grado(B)

« Si A tiene atributos al, a2, ..., an, y B tiene atributos b1, b2, ..., bn, el dominio de cada uno de estos
atributos tienen que ser iguales. A[al, a2, ..., an] y B[b1l, b2, ..., bn] Dom (Ai) = Dom (Bi).

El producto cartesiano devuelve una relacion que es el resultado de la construccion de dos relaciones. La

unién, interseccion y diferencia van a consistir en operar dos conjuntos que verifiquen la relacién de

compatibilidad. Los conjuntos que verifiquen esta relacién son iguales estructuralmente

Ejemplo: Dadas dos relaciones Ay B.

A A1 A2 BB1B2

X1X1

X2Y2

Y1Y3

30

Y2X4

A UNION B A INTERSECT B A MINUS B B MINUS A

X1X1X2X4

X2Y2Y1Y3

X1

Y2

Y3

X4

El producto cartesiano (TIMES) es cerrado, con lo que obtenemos una relacion a partir de otras dos. Siemg
gue se hace el producto cartesiano para dos conjuntos con un atributo en comun, se le pone siempre delan
del nombre del atributo el nombre de la relacién. A TIMES B es unarelacion/"t" A, r" B, (t, r) " A TIMES
B. El producto cartesiano es asociativo y conmutativo.

Ejempilo:

SP S# P# CTD S S# Noms Estado

S1 P1 300 S1 Sala 20

S2 P1 300 S2 Jara 10

S4 P5 400 S4 Alda 30

SP TIMES S

SP.S# P# CTD S.S# Noms Estado

S1 P1 300 S1 Sala 20

S1 P1 300 S2 Jara 10

S1 P1 300 S4 Alda 30

S2 P1 300 S1 Sala 20

S2 P1 300 S2 Jara 10

S2 P1 300 S4 Alda 30

S4 P5 400 S1 Sala 20

S4 P5 400 S2 Jara 10

S4 P5 400 S4 Alda 30

31

El producto cartesiano tiene un problema cuando se define un producto cartesiano del mismo conjunto ya g
se repetirian el nombre de los atributos, y estos deben de ser Unicos. Esto se soluciona definiendo un alias
la relacion.

Ejempilo:

DEFINE ALIAS SP FOR A

SP TIMES A

SP.S# SP.P# SP.CTD A.S# A.P# A.CTD

Siempre que se pide buscar parejas de algo hay que hacer el producto cartesiano de una relacién por si mi
5.4.—- Los operadores relacionales tipicos.

WHERE (seleccién).— Si P es un predicado que se puede construir con los atributos de una relacién R,
entonces R WHERE P, es la seleccion segun el predicado P, es decir, se queda con las tuplas de la relacié
que hacen cierto el predicado P. (S WHERE P). El predicado P puede ser compuesto mediante los operadc
AND, OR, < ..., y devuelve verdadero o falso.

Proyeccion.— Si se tiene una relacién R con atributos Al, A2,..., Am, se dice que se ha proyectado R sobre
conjunto A de atributos Al, A2,..., Am cuando se eliminan de R todas las columnas que no estan en el
conjunto Ay se eliminan las tuplas repetidas que puedan aparecer.

Ejempilo:

SP S# P# CTD [S#, CTD] S# CTD

S1 P1 300 S1 300

S2 P1 300 S2 300

S1 P2 300 S1 300 * se eliminan tuplas repetidas.

JOIN (Reunién).— Sean Ay B dos relaciones y P un predicado que conecta atributos de las dos. Se llama
reunion al resultado de (A TIMES B) WHERE P. Esto recibe el nombre de Reunién (JOIN).

Ejempilo:

SP S# P# CTD S# Estado SP JOIN B S# P# CTD Estado
S1P1100S110S1P110010

S1 P2 200 S1 P2 200 10

S1P3 100 S1P3100 10

S2 P1 100

La reunién elimina campos en comparacion de igualdad de atributos.

32

DIVIDE BY (Divisién).— Sea A una relacién de grado m + n y B otra relacién de grado n. El operador
division produce una nueva relacion de grado m, donde el (m + i)—esimo atributo de A y el i-esimo atributo
de B (i en el rango de 1 a n) deben estar definidos sobre el mismo dominio.

Ejemplo: Proveedores que suministran todas las piezas.

SP [S#, P#] DIVIDE BY S[P#]

SP[S#, P#] S# P# DIVIDE BY S[P#] P# = P#

S1P1P1P1

S1P2P2

S2 P3

Encontrar todas las piezas de color rosa:

SP[S#, P#] DIVIDE BY ((P WHERE Color = Rosa)[P#])

TEMA 6

CALCULO RELACIONAL

6.1.— Introduccién.

6.2.— El calculo de predicados en Bases de Datos relacionales.

6.3.— El calculo relacional orientado a tuplas.

6.1.— Introduccién.

El algebra relacional y el célculo relacional son dos alternativas para establecer una base formal de la parte
manipulativa del modelo relacional. La diferencia entre ellas es la siguiente: mientras que el algebra ofrece
conjunto de operaciones explicitas (reunidn, unién,...) que pueden servir en la practica para indicar al sister
la forma de construir alguna relacién deseada a partir de las relaciones dadas en la base de datos, el célcul
solo ofrece una notacion para formular la definicion de esa relacion deseada en términos de esas relacione
dadas.

El célculo solo plantea el problema y el algebra proporciona un procedimiento para resolver ese problema.
realidad el algebray el calculo son totalmente equivalentes. Para cada expresion del algebra, existe una
expresion equivalente en el calculo; de manera similar para cada expresiéon del calculo, existe una expresié
equivalente en el algebra.

El célculo relacional se fundamenta en una rama de la légica matematica llamada calculo de predicados.
6.2.— El calculo de predicados en Bases de Datos relacionales.

Una herramienta que permite representar el conocimiento del mundo real es el célculo de predicados.

El célculo de predicados consta de los siguientes elementos:

33

« Dominio del discurso.— Conjunto de objetos de nuestro mundo con una entidad propia, por ejemplo,
personal, coches,...

« Objetos.— Son constantes del dominio del discurso, por ejemplo, dentro de personas: Juan, Pepe,
dentro de colores: azul, verde,...

« Variables.— Representaciéon en un momento dado un objeto del domino. Una variable x tomara algul
valor en un determinado momento, si hablamos de colores x podria tomar en algin momento el azu

» Funciones.— Permiten relacionar un dominio con otro, por ejemplo, podemos tener una funcién padr
gue va del dominio personal al dominio persona. Padre (Juan): devolvera el valor del padre de Juan

 Predicados.— Son relaciones entre dominios cuya evaluacién da como resultado verdadero o falso,
por ejemplo: casado (Juan, Maria). Mediante los predicados se representan sentencias que se
denominan férmulas atémicas.

» Férmulas atdmicas.— Van a tener un valor real, es decir, una funcion que, dados los argumentos
apropiados, produce un valor falso o verdadero. Se pueden unir distintas formulas mediante juntore:

* AND (")

* OR (")

* NOT ()

* IMPLICA (1)

Ejemplo: F1 " Escribi6é (Cervantes, El Quijote) ! (V)

F2 " Naci6 (Cervantes, Monforte) ! (F).

F1"F2!1 (V).

F2" F2!(F).

Cualquier conjunto de formulas atémicas se llaman férmulas bien formadas (WFF 6 FBF)
Ejemplo: Si suspendo B.D. 0 me pego un tiro o se lo pego al profesor.
Suspendo (yo, BD) ! Pego (yo, yo) " Pego (yo, profesor).

Suspendo (yo, x) ! Pego (yo, X) " Pego (yo, profesor (x)).

« Cuantificadores.— Restringen el valor que puede tomar la variable x. Dicen en que forma es cierta
una féormula que implica variables. Hay dos tipos de cuantificadores.

 Cuantificador universal ("X).
« Cuantificador particular ("x).

Cundo una variable esté cuantificada se le llama variable ligada y cuando una variable no esté cuantificada
le llama variable libre. Para la representacion de las relaciones en término del calculo de predicados hay do
formas que son las siguientes:

* Célculo relacional orientado a tuplas.
» Céalculo relacional orientado a dominios.

6.3.— El calculo relacional orientado a tuplas.

Las expresiones del calculo de tuplas se construyen a partir de los elementos siguientes:

34

« Variables de tupla T, U, V, Cada variable de tupla se restringe a variar sobre alguna relacién con
nombre. Si la variable de tupla T representa a la tupla t, entonces la expresién T.A representa al
componente A de T, donde A es un atributo de la relacion sobre la cual varia T.

» Condiciones de la forma x*y donde * es cualquiera de los simbolos =, <>, <, <=, >, >=, y al menos
una de entre x e y es una expresion de la forma T.A y la otra es una expresién semejante 0 una
constante.

* Férmulas bien formadas: Son la unién de férmulas atémicas.

Variables libres y acotadas.— Cada ocurrencia de una variable de tupla dentro de una formula bien formada
es libre 6 acotada.

» Dentro de una condicién, todas las ocurrencias de las variables de tupla son libres.

« Las ocurrencias de las variables de tupla en las formulas bien formadas (f), "(f) son libres/acotadas segur
sean libres/acotadas en f. Las ocurrencias de las variables de tupla en las férmulas bien formadas (f " g),
g) son libres/acotadas segun sean libres/acotadas en f 0 en g (cualquiera de las dos en donde aparezcar

 Las ocurrencias de T que sean libres en f son acotadas en las férmulas bien formadas, " (f), "T(f)

Una expresién del calculo de tuplas es de la forma T.A, U.B, , V.C [WHERE f] donde T, U, , V son variables

de tupla; A, B, , C son atributos de las relaciones asociadas, y f es una formula bien formada que contiene
exactamente T, U, , V como variables libres. El valor de esta expresion es una proyecciéon del subconjunto «
producto cartesiano T x U x x V para la cual f se evallla como verdadera.

Sintaxis BNF para calculo relacional orientado a tuplas.— Ver fotocopia 6.1.

Solucién a los ejercicios de algebra relacional utilizando calculo relacional.

RANGE OF AX IS ALUMNOS

RANGE OF AY IS ALUMNOS

RANGE OF MX IS MATRICULA

RANGE OF MY IS MATRICULA

RANGE OF SX IS ASIGNATURA

RANGE OF SY IS ASIGNATURA

RANGE OF PX IS PROFESOR

RANGE OF PY IS PROFESOR

* MX.AL# WHERE MX.ASIG#="BD3'

* MX.AL- WHERE " SX(MX.ASIG# = SX.ASIG# " SX.NOMBRE = 'BD')

* PX.PR# WHERE " SX(PX.ASIG# = SX.ASIG# " SX.NOMBRE = "EDI")

* SX.NOMBRE, SX.CURSO WHERE " MX(MX.ASIG# = SX.ASIG# " MX.AL#="Pepito Perez’)

* PX.PR# WHERE " MX(MX.ASIG# = PX.ASIG# " MX.AL# = "Pepito Perez')

* MX. AL# WHERE " PX(PX.ASIG# = MX.ASIG# " PX.PR# = "Armando Guerra Segura’)

* MX.AL# WHERE " SX(SX.ASIG# = MX.ASIG# " SX.CURSO = "2%)
* MX.AL# WHERE " SX(SX.ASIG# = MX.ASIG# " SX.CURSO = "2%)

35

* MX.AL# WHERE " SX(SX.ASIG#=MX.ASIG# " SX.CURSO="2%) " (" SX(SX.ASIG# = MX.ASIG# "
SX.CURS0=29)

* AX.AL# WHERE (AX.BECA="SI'" AX.PROVINCIA<>"Orense")

o AX.AL# WHERE (AX.PROVINCIA<>"Orense’) " " MX(MX.AL#=AX.AL#) " " SX(SX.ASIG# =
MX.ASIG# " SX.CURSO = "1%)))

* AX.AL# WHERE (AX.EDAD>25) " " MX(MX.AL#=AX.AL#) " " SX(SX.ASIG# = MX.ASIG# "
SX.CURSO="1%)))

* PX.PR#, PY.PR# WHERE (PX.ASIG#=PY.ASIG# " PX.PR#<>PY.PR#))

* SX.NOMBRE WHERE " MX(MX.ASIG# = SX.ASIG#) " " AX(AX.AL#=MX.AL# "
AX.PROVINCIA="Pontevedra")))

TEMA 7

TEORIA DE DISENO DE BASES DE DATOS RELACIONALES

7.1.— Descomposicién de esquemas.

7.2.— Descomposicién con la propiedad de unién sin pérdida de informacion.

7.3.— Test de la propiedad LJ.

7.4.— Descomposicién con preservacion de dependencias.

7.5.— Algoritmo de Test de preservacion de dependencias.

7.6.— Formas Normales basadas en dependencias funcionales.

7.6.1.— Formas Normales de Codd.

7.6.1.1.— Primera Forma Normal.

7.6.1.2.— Segunda Forma Normal.

7.6.1.3.— Tercera Forma Normal.

7.6.2.— Forma Normal de Boyce—-Codd

7.7.— Algoritmo de descomposicién de Forma Normal de Boyce—Codd con la propiedad LJ.

7.8.— Descomposicién en Tercera Forma Normal de Codd con preservaciéon de dependencias.

7.9.— Descomposicién en 32 Forma Normal de Codd con preservacion y verificacion de la propiedad LJ.

7.1.— Descomposicién de esquemas.

Dado un esquema R, con un conjunto de atributos T y un conjunto de dependencias funcionales F se plante

problema de que se puede descomponer una serie de proyecciones f = {R1, R2, ..., Rn} de forma que debe

representar la misma informacion que R.

Esto es interesante para evitar las anomalias que se pueden producir en esquemas grandes. Pueden surgi
anomalias de Codd:

36

» Anomalias de Insercién.— Se produce una pérdida de informacién porque no se puede insertar una tupla
una relacién al no conocer el valor de los atributos primarios.

» Anomalias de Borrado.— Consiste en una pérdida de informaciéon como consecuencia del borrado de una
tupla porque se pierde toda la informacion de todos sus atributos.

» Anomalias de Modificacion.— Necesidad de propagar modificaciones debido a un disefio redundante.

Al proceso de sustitucién de un esquema por sus proyecciones se le denomina normalizacion.

7.2.— Descomposicién con la propiedad de unién sin pérdida de informacion.

Seaf={R1,..., R2} una descomposicién del esquema R, y sea Ri (Ti, Li) la especificacibn completa del
esquema i—ésimo. Se dice que f es una descomposiciéon con la propiedad de Unién sin pérdida de informac
respecto de L si para toda ocurrencia r del esquema R (r 0R) se verifica la siguiente igualdad:

R =R1[T1] JOIN ... JOIN RK [TK]

La informacién origen debe ser la misma que la contenida en las extensiones del conjunto Ri de esquemas
resultantes. Esta formula indica que si se hace la unién de todas las proyecciones debe de dar el esquema
original. Esto es la llamada propiedad LJ.

7.3.— Test de la propiedad LJ*.

Sea una descomposicion de R (T, L) con T={A1, A2, An}, L={x !y /x"y" T}y f={R1, ..., R2}. Para
verificar el cumplimiento en f de la propiedad LJ se va a utilizar el siguiente algoritmo:

Se constituye una tabla de k filas y n columnas. La columna j corresponde al atributo Aj y la fila i al esquem
Ri.

En la interseccion de ambas se coloca el simbolo aj si el atributo de esa posicién pertenece al conjunto de
atributos y el simbolo bij en el caso contrario. Se considera a continuacién cada una de las dependencias
funcionales (x!y)d L. Si se encuentran dos filas que coinciden en las entradas correspondientes a x entonce
iguala a Y (x = y) de la siguiente manera:

* Si un simbolo es aj se hace su homdlogo igual a aj.
» Si ambos son del tipo b se igualan los subindices de uno cualquiera de ellos a los del otro.

Este proceso se repite hasta que la tabla no varie. Si finalmente se encuentra al menos una fila de la forma
a2, a3, , an) la descompaosicién verifica la propiedad LJ y no la verificara en caso contrario.

Ejemplo: Dado el siguiente esquema R (T, L).
T={A,B,C,D,E}
L={A!C,B!C,C!D,DE!C,CE!A}

F = {AD, AB, BE, CDE, AE}

BIC |A [B C D E

AD |[al [b12 |b13 |a4d b15
AB |al [*a2 b13 |b24 |b25
BE |b31*a2 b33 |b34 |a5

37

CDE |b41bl12 |a3 ad ab
AE |al [b52 |[b13 [b54 |[ab
AIC |A B C D E
AD [*al bl2 [(b13 [a4 b15
AB [*al a2 b23 [b24 |b25
BE |b31 |a2 b33 [b34 [a5
CDE |b41 bl12 |a3 a4 ab
AE [*al b52 [b53 [b54 [a5
DE!C (A B C D E
AD al b13 ([(b13 [a4 b15
AB al b13 ([(b13 [a4 b25
BE b31 [b13 [b33 [*a4 *ab
CDE |b41 |a3 a3 *ad *ab
AE al b13 [b13 [*a4 *ab

C!D A |B C D E

AD al |b12 |*b13 a4 b15

AB al |a2 [|*b13 b24 |b25

BE b31 (a2 |*b13 b34 |[a5

CDE b41 |b42 |a3 a4 a5

AE al [b52 |*b13 b54 |a5
A B C D E

AD |al b12 b13 |ad b15
AB |al a2 b13 |a4 b25
BE |al a2 a3 |a4 as
CDE |al b42 a3 |a4 ab
AE |al b52 a3 |a4 ab

CEIA |A B C D E
AD al [b12 [b13 |a4 |bl15
AB al (a2 [b13 |a4 [b25
BE b31 a2 [*a3 [*a4 |ab5
CDE |b4l |b42 [|*a3 [*a4 |ab
AE al |b52 [*a3 [|*a4 [a5

Al haber una fila que cumple (al, a2, a3, a4, ab) se verifica la propiedad LJ.

Sea R (T, L). Su descompaosicién en exactamente dos subesquemas verifica la propiedad LJ se cumple que
(TL"T2)!1(TL-T2)8L6(TL"T2)! (T2-T1)dL +

7.4.— Descomposicién con preservacion de dependencias.

Para poder realizar la descomposicion con preservacion de dependencias, el conjunto de dependencias
funcionales de partida debe ser equivalente al conjunto de dependencias de los esquemas funcionales

38

resultantes.

Se parte de un esquema R (T, L) y una descomposiciéon f = {R1, R2, Rk}, L ={x !y /x "y " T}. Para Ri (Ti,
Li) es la proyeccioén de L.

Rik (Ti, L), Li={Xi'Yi" L+/ X" Y " Ti}. Se cumple la preservacion de dependencias si se verifica que

ULp*r=1*
i=l

39

