APUNTES DE LA ASIGNATURA

PROGRAMACION

- Nivel exigido:

Para seguir estos apuntes se requieren unos conocimientos del lenguaje C
a nivel basico.

— Tipos de Datos:

enteros:

char 1 caracter (1 byte = 8 bits)

int El tamafio de un registro del micro —> depende de la arquitectura y del S.O. para arquitecturas i386 (Inte
MSDOS —> 2 hytes (16 bits) en modo protegido 4 bytes.

LINUX, WIN32 —> 4 bytes (32 bits)

long 4 bytes o 32 bits.

decimales:

float 4 bytes (32 bits), para el exponente y la mantisa.

double 8 bytes (64 bits), también para exponente y mantisa.

— Modificadores a los tipos basicos de datos:

De signo:

Signed Con signo (hormalmente por defecto)

Unsigned Sin signo

Ejempilo:

unsigned char

Tenemos 8 bits (1 byte) para trabajar datos sin signo es decir un rango
de 0...255

signed int

(En MS-DOS p.ej.) Tenemos 16bits (2 bytes) para trabajar datos numéricos,

teniendo en cuenta que el bit de mayor peso se utiliza para el signo
es decir 1 negativo 0 positivo luego podemos obtener un rango de:
-32768...32767

De visibilidad:

static Se inicializara la variable a 0 y una vez terminado el médulo
permanece estatica, es decir mantiene el valor a la siguiente
llamada (se utiliza en funciones recursivas).

Ejempilo:

void Contador(void)

static int conta;

printf("%d", conta++);

Si llamamos a esta funcién sucesivas veces veremos como el valor de
conta se va modificando con cada llamada, es decir permanece estatico, aunque
no por ello varia su visibilidad, vamos, que desde el main no podras ver su
valor ya que es una variable local.

auto Se crea y se destruye en el &mbito en el que se declara, y

ademas no se inicializa (por defecto todas las variables

gue no se declaren como static)

extern Sirve para declarar una referencia a una variable que puede

estar en otro médulo. (Sélo se puede inicializar donde se

declara)

Ejempilo:

ficherol.c

int mivar = 0;

fichero2.c
/* Referencia a la variable declarada en ficherol.c */

extern int mivar;

Modo de acceso:

const Hace que una variable tome el valor con el que la inicialicemos el cual ya no podra ser cambiado.
volatil Indica que el valor de la variable puede cambiar incluso por
condiciones eternas al programa que la declara.

(Ejemplo una variable puntero al contador del reloj (Es

I6gico que queramos gue el S.0. pueda seguir modificando

su valor))

Los modificadores de visiblidad se pueden aplicar también a las definiciones
de las funciones.

Ejempilo:

/* Le indicamos al compilador que usaremos la funcion getch declarada

en otro médulo */

extern int getch(void);

— La funcién main:

Es la funcién principal (como su nombre indica) del programa, en caso de
tratarse de un programa por médulos (varios ficheros .c y .h) sdélo puede
existir una. Su declaracion es asi:

[tipo] [nom.] [param]

void main ()

[tipo] Es el valor devuelto, si se omite se supone int.

[nom.] Nombre, el nombre de la funcién.

[param.] Parametros que recibe la funcién si se deja vacio es igual a void.
Argumentos pasados al programa:

La declaracion de main para trabajar con argumentos es la siguiente, y aunque
se suele utilizar estos nombres para las variables, podemos usar los que

mas nos gusten. De los que se citan a continuaciéon podemos usar 0, 1, 2 0 3.
main (int argc, char ** argv, char **env)

argc Numero de argumentos (minimo 1 (el nombre del programa))

**argv También se puede declarar *argv[] o argVv[][]. Es una array
bidimensional de chars es decir una tabla de caracteres o un

vector de cadenas, contiene uno a uno los argumentos del programa

**env Similar al anterior, sélo que en este caso se trata de las

variables de entorno declaradas en el sistema.

— Instrucciones para el prepocesador:

Se declaran con una almhoadilla "#" en la primera columna, son las siguientes:
include

define

ifdef

ifndef

endif

Al generar un programa se ejecutan los siguientes programas:

*cpp (C Pre Procesor):

Encargado de expandir el fuente (sustituye los #include por el fichero ...)
generando uno nuevo.

*cc (C Compiler):

Crea la tabla de simbolos y crea el médulo objeto (con referencias a funciones

externas).

*link (Linkador) :

Incluye las funciones externas a mi propio programa y lo junta todo generando
un ejecutable.

Tener en cuenta que la mayoria de los compiladores permiten ejecutar sélo
uno o varios de los pasos anteriores, por ejemplo en el GCC (GNU C Compiler)
usando la opcién —c le indicamos al compilador que pare antes de linkar

(util para compilar una libreria que luego enlazaras con tu programa principal)
— Distintas formas de usar el modificador void:

void f();

Indica que la funcién f no devuelve ningun valor.

void *variable;

void *f();

Variable/Funcién de tipo puntero a un tipo de datos desconocido.

— printf:

(print formatted —> Imprimir formateado)

printf("formato”, ...);

Su nimero de parametros es variable, ya que en C las funciones pueden tener
parametros variables en tipo y en nimero.

El "formato” puede contener literales —> "Pepito”, patrones "%c" y secuencias
de escape "\t"

Algunos patrones:

%s (String) Cadena.

%c (Character) Caracter.

%d (Decimal) Valor entero decimal

%x Hexadecimal.

%f (Flotante).

Los patrones numéricos pueden estar modificados por una | que indica tipo long.
Si en el texto queremos escribir el % podemos usar un escape \% o duplicar el
"%" %%.

Algunas secuencias de escape:

\n (New line) Retorno de carro y salto de linea.

\r Retorno de carro.

\t Tabulador (normalmente desde la columna O van de 8 en 8 0 9 en 9).

\a Pitido de la campana.

\" 0 \\ ... para escribir las comillas, la contrabarra y otros caracteres especiales.
— Bucles e iteraciones:

[ini] [cond] [inc]

for (;;)

(...)

[ini] La inicializacion de las variables.

[cond] Condicién durante la cual se seguira repitiendo el bucle.

[inc] Incrementos o pasos.

Se ejecuta el bucle mientras se cumpla la condicién, ejecutandose cada vez el incremento.
[cond]

while ()

(...)

[cond] Condicién durante la cual continua la ejecucién del bucle

Se ejecuta si y so6lo si se cumple la condicion y mientras esta se cumpla.

do

(...)

[cond]

while ();

Se ejecuta una vez como minimo y a partir de ahi mientras se cumpla la condicion.
Instrucciones dentro de las iteraciones:
break: Sale del bucle en el mismo momento que se encuentra esta instruccion.
continue: obligas al programa a saltar al comienzo del bucle.
goto: Salto a una etigueta (ya no se emplea)
» Control de Flujo:
Operadores que podemos emplear para las condiciones:
== |gual
I= Distinto
< Menor
> Mayor
<= Menor o Igual
>= Mayor o Igual
&& Condicién "Y'
|| Condicion "O'
En C se compara de izquierda a derecha, es decir:
(A>B)
Significa: ¢, A es mayor que B ?
IF:
If (cond)
(..

else

(..)

Se ejecuta si se cumple la condiciéon impuesta en cond, si asi lo deseamos, podemos incluir el trozo que se
ejecutara en caso de no cumplirse, afiadiendo la linea else.

SWITCH:

switch (cond)

case
(..r)

break;
case
(..r)

break;

(..)

default

}

El break no es obligatorio, ya que es posible que nos interese dar la posibilidad de que se cumplan varias, \
que en el switch de C el programa no termina las comparaciones hasta encontrar la llave del switch o un
break.

default: Es la sentencia que se ejecutara por defecto.

— Tipos de Datos definidos por el usuario:

Estructuras (Registros):

struct [nombre]

{

tipo varl;

tipo varz;

(...)

}

Para acceder a los datos de un registro se utiliza se hace con el operador punto ".', de la siguiente manera:

dato.varl = 1;

En caso de que dato no sea una variable tipo estructura, sino un puntero a estructura se emplea el operadc
flecha "—>"

dato—>varl = 1;

Ejempilo:

struct mireg

{

char nombre[40];

int telefono[10];

}

void main(void)

{

struct mireg registrol;

strepy(registrol.nombre, Mi nombre);
strepy(registrol.telefono, 976387403);
}

Campos de bits:

Son un tipo de estructura en el que algunos de sus miembros tiene caracteristicas especiales.
struct [nombre]

{

unsigned int var:n;

(..r)

}

siendo n el nimero de bits que queremos que contenga esa variable. Se pueden combinar con cualquier ot
tipo de datos. (NOTA: el tamafio que devolvera un sizeof echo a un tipo estructura campo de bits es el del
valor siguiente (ya que sizeof siempre devuelve cantidad de bytes).

Ejempilo:

struct pepito

{

char letra;

unsigned bits:2;

}

Aungue el uso normal que se le suele dar a un campo de bits es el de agrupar condiciones CIERTAS o
FALSAS, cuando un valor combine un cierto tipo de situaciones o estados. (Ejemplo: estado del modem
(CTS, RTS ...))

Uniones:

Se suelen emplear en conjuncién con los campos de bits, éstas nos permiten contener una misma variable
dos zonas de memoria diferentes y cuyo tipo de dato no tiene por qué ser igual (por ejemplo contener el val
100 como un char y como un campo de 8 hits.)

Ejempilo:

struct cbits

{

unsigned bitl:1;

unsigned bit2:2;

(...8)

}

union tag

{

char c;

struct chits b;

}

void main(void)

{

union tag mivar;

mivar.c = OxFF

printf(Bitl: %d \n, mivar.b.bitl);

}

— Definirnos un tipo propio:

Muchas veces, resulta mas comodo definirnos un tipo de dato que emplearemos igual que si se tratase de
propio del C, a partir de nuestras estructuras o uniones, o para dar claridad al cédigo.

Para ello empleamos typedef,

10

typedef:

typedef [tipo] [nombre(s)]
Ejempilo:

#define FALSO 0

#define CIERTO !FALSO
typedef unsigned char byte, boleano, mio;
void main(void)

{

byte mivar;

boleano continuar = FALSO;
if (continuar)

(..r)

}

Aunque, como he indicado también podremos usarlo con nuestras estructuras y uniones.
Ejempilo:

struct reg

{

int datol;

char dato2[20];

}

typedef struct reg REG;
typedef struct reg *PREG;

{

REG mireg;

(..r)

}

11

s

)

typedef struct

{

int datol;

char dato2[20];

} REG, *PREG;

— Punteros:

Como bien sabemos, en ellos reside gran parte de la potencia del lenguaje C, se trata de un tipo de variabls
gue lo que contiene es una direccidon de memoria en la que se supone se encuentra otra variable. Es decir
apunta a algun sitio.

Se declaran de la siguiente manera:

[tipo al que apuntan] *[nombre]

char *p;

'p' es una variable que contendra la direccién de memoria en la que se aloja un char;

direccién Contenido Variable

Lo que representa el esquema anterior, bien podria ser el siguiente caso:

Formas de acceder a un puntero:

*p Obtenemos el valor de la variable a la que apunta, "a'

p La direccion de memoria donde esta la variable a la que apuntamos, 200.
&p La direccién donde esta alojado p, 500.

Aritmética de punteros y Arrays:

Tal y como hemos visto, un puntero no es mas que una variable que apunta a otra, un uso corriente de éstc
para recorrer arrays, un array no es mas que una serie de posiciones de memoria consecutivas referenciad

12

por una variable:

int numero;

intv[4] ={1,2,3,4};

{

/* Asignamos el cuarto elemento (4) a numero */
numero = v[3];

}

Esto mismo podemos hacerlo con punteros gracias a la aritmética de punteros. A un puntero podemos deci
avanza n posiciones o retrocede n posiciones, y el sélo sabra las posiciones de memoria que tendra que
avanzar dependiendo de el tipo al que apunte, es decir si apunta a un tipo byte sabra que cuando le pedimc
gue avance uno, tendra que avanzar un byte.

int numero;

intv[4] ={1,2,3,4};

int *p;

{

/* Hacemos que p apunte al primer elemento del vector (array) */

p=v; /*=que p = &v[0]; */

numero =*(p + 3);

}

Cuidado con no usar los paréntesis, ya que el operador “*' posee preferencia sobre el operador "+'.

NOTA: El tamafio de una variable tipo puntero en memoria depende del tipo de memoria que queramos
direccionar (en MS-DOS 16bits (2 bytes), con memoria lineal (modo protegido) 32 bits).

Cuando usamos punteros para acceder a arrays (por ejemplo a cadenas), suele ser bastante Gtil declarar e
puntero como variable tipo register ya que esto incrementa (si puede) la velocidad que ya de por si tienen ¢
punteros.

Ejempilo:

[* strlen recibe un puntero a char (cadena)

devuelve el tamafio de la misma */

int strlen(char *s)

13

{

register char *p = s;
while (*p) pt++;
return (p—s);

}

Los punteros y las funciones:

Hay que tener en cuenta, que C, al contrario que otros lenguajes como BASIC o PASCAL, no tiene variable
pasadas a funciones por valor (copia del valor) o por referencia (direccion de la variable).

En C s6lo podemos pasarle las variables por valor a una funcién, es decir no es la variable en si sino un

duplicado de la misma.

Para remediar ésto, hay que emplear punteros, es decir en vez de pasar una variable le pasamos otra que
apunte a ella, en definitiva un puntero.

Todos los cambios que realicemos sobre la variable apuntada, como se realizan directamente en memoria,
perduran una vez finalizada la funcién.

void resta2(int *numero)
{

*numero = *numero — 2;
[* Estupidez */

numero = numero + 100;
}

void main(void)

{

intn=10;

int *p;

p=n;

resta2(n);

}

Resultado de ejecutar el ejemplo anterior:

n=>8

p=>&n

p sigue apuntando a n, porque aunque modifiguemos el valor del puntero en la funcién, insisto en que toda:
las variables se pasan por valor, es decir no hemos pasado el puntero en realidad sino una copia del valor
puntero (direccién de p en este caso).
Ejemplos:

/* Copia una cadena en otra */

char *strcpy(char *d, char *s)

{

char *ptr = d;

while (*d++ = *s++);

return(ptr);

}

/* Concatena dos cadenas */

char *strcat2(char *d, char *s)

{

char *p = d;

strepy(char *(d + strlen(d)), s);
return(p);

}

Ficheros en el ANSI C:

Un fichero no es mas que una serie de datos seguidos, almacenados en un soporte, que se referencia por
nombre.

(La mayoria de las funciones de alto nivel para manejo de ficheros, comienzan por “f')
Apertura:

FILE *fopen(<ruta>, <modo>)

Abre un fichero alojado en <ruta> bajo las condiciones gue le indicamos en <modo>.

Si tiene éxito devuelve un puntero a FILE y en caso contrario NULL.

15

<ruta> Fichero a abrir

<modo> Modo de apertura:

r Lectura — Abre un fichero que ya existe

w Escritura — Crea un fichero (si existe lo machaca)

a Afadir (append) - Si existe afiade al final datos, si no lo crea.

Para permitir lectura/escritura, hay que afadir “+": r+, a+, w+

Por defecto, los ficheros se abren en modo Texto t, pero en caso de que queramos abrirlos en modo binaric
afiadiremos una b al modo de apertura (ejs.: rb, r+b) (En modo binario, interpreta el texto tan cual, sin
embargo en modo Texto los \n por ejemplo los interpreta como \r\n luego el tamafio puede variar con el rea
Cierre:

int fclose(FILE *f)

Cierra el fichero apuntado por f, devuelve 0 si todo ha ido bien o un codigo de error en caso contrario. (Note
en teoria, C cierra los ficheros abiertos al finalizar el programa, pero aln asi siempre conviene asegurarse |
no llevarse sustos).

Escritura de datos:

fprintf(FILE *f, <formato>, ...)

Su funcionamiento es idéntico al de printf, s6lo que escribira en este caso en el fichero que le pasemos.
Ejempilo:

fprintf(stdout, Hola pefna! %d\n, numeraco)

Imprimird por la salida estandar (normalmente la pantalla) el mensaje y la variable numeraco.

Hay que tener en cuenta, que en C, (al igual que UNIX ya que C se disefi6 para crear el S.0O. UNIX) todo
dispositivo E/S es tratado como un fichero, luego podremos usar esta funcion para trabajar con cualquier
dispositivo de este tipo.

Nada mas arrancar un programa en C bajo MS—-DOS abre 5 ficheros como minimo:

stdin Entrada estandar (teclado)

stdout Salida estandar (pantalla)

stderr Salida de errores (pantalla)

stdaux Salida auxiliar (com)

stdprn salida impresora estandar (Iptl)

16

De estos 5, los 3 primeros son estandar y los 2 ultimos son del MS-DOS.
Posicionamiento:

fseek(FILE *f, long offset, int pos)

Nos posiciona en el lugar que le indiquemos dentro del fichero apuntado por f.

offset Desplazamiento relativo a partir de la posicion que le indiquemos en pos, puede ser positivo (hacia
delante) o negativo (hacia atras)

pos tenemos tres opciones:

SEEK_SET A partir del principio del fichero

SEEK_CUR A partir de la posicion actual del fichero
SEEK_END A partir del final del fichero

Ejempilo:

/* Quiero posicionarme en la posicidn penultima del fichero f */
fseek(f, =1, SEEK_END);

long ftell(FILE *f)

Nos devuelve el desplazamiento con respecto al principio del fichero, de la posicion actual (Se suele emple
para convinarlo con fseek).

Lectura de datos:

unsigned fread(void *d, unsigned n, int tam, FILE *f)

*d Puntero a la zona de memoria donde almacenaré los datos leidos.

n Numero de elementos que leeré

tam Tamarfio de cada uno de los elementos a leer.

devuelve: unsigned Namero de elementos que ha conseguido leer.

Para escribir:

unsigned fwrite(void *s, unsigned n, int tam, FILE *f)

Funciona exactamente igual que fread, pero para escritura en vez de lectura.
Escritura/Lectura de bloques (o Registros):

Empleando las dos funciones citadas antes y una estructura, podemos leer/escribir un registro de golpe en
fichero.

17

Ejemplo:

typedef struct

{

char nombre[20];

int numero;

} DATOS;

FILE *fps, *fpd,;

DATOS v;

/* Lectura */

fread((void *) &v, sizeof(DATOS), 1, fps);
[* Escritura */

fwrite((void *) &v, sizeof(DATOS), 1, fpd);
— #pragma:

#pragma es una instruccion de prepocesador que nos servira para indicar directivas al éste. Se emplea de |
siguiente manera:

#pragma <directiva>

<directiva> Es la directiva que le queremos indicar al preprocesador.

Por ejemplo podemos utilizar argsused gue le indicara que es posible que no empleemos todos los argume
gue le pasamos a la funcién. Aunque hay muchas otras directivas (algunas especificas del compilador), asi
a mirarse la ayuda.

Ejempilo:

#pragma argsused

void main(int argc, char **argv);

{

(...)

}

Moldeado:

(tipo) dato

18

tipo Tipo al que se quiere convertir el dato dato.

Ejempilo:

long n =(long) 30;

[*

MOSTRAR UN FICHERO INVERTIDO
By Jesls Arnaiz

*/

#include <stdio.h>

#include <conio.h>

#include <stdlib.h>

[* Para evitar el "warning" */

#pragma argsused

int main (int argc, char **argv)

{

FILE *f;

long total;

char ch;

if ((f="fopen(argv[l], "r"))==NULL)
{

printf("Error al intentar abrir el fichero\n™);
exit(-1);

}

clrscr();

/* Namero de caracteres que tengo */
fseek(f, OL, SEEK_END);

total = ftell(f);

19

/* Voy al final del fichero */
fseek(f, -1, SEEK_END);
while(total)

{

fread(&ch, sizeof(char), 1, f);
printf("=%c", ch);

total——;

fseek(f, -2, SEEK_CUR);
}

fclose(f);

return(0);

}

Asignacién dindmica de memoria:

Para hacer uso de este tipo de memoria, tenemos que declarar un variable tipo puntero al dato que queram
manejar. Se emplean, principalmente, las siguientes funciones:

void *malloc(size_t)

void *calloc(size_t, int tam)
void *realloc(void *ptr, size t)
malloc:

Devuelve, si ha tenido éxito, un puntero (void) a la zona de memoria que se ha asignado, si no, devuelve
NULL.

Como argumentos recibe:
size_t: NUmero de bytes que deseamos dimensionar.

Para que la llamada tenga éxito, no sélo es necesario que dispongamos de la memoria necesaria libre sino
ademas esta memoria debe de ser consecutiva.

calloc:
(Clear alloc)

Argumentos:

20

size_t: NUmero de elementos de tamafio "n' que queremos que quepan en la zona de memoria.

int tam: Tamafo de estos elementos.

Produce el mismo resultado que un malloc, con la salvedad que calloc ademas inicializa la memoria a Os.
Hay que tener en cuenta, que un calloc no funciona exactamente igual que el malloc, ya que en malloc,
generalmente, asigndbamos un valor a size_t igual al nUmero de elementos multiplicado por el tamafio de |
mismos, nétese que con calloc esto no es necesario, ya que el tamafio de los elementos se lo pasamos en
Ejempilo:

long *ptr;

/* Dos asignaciones idénticas */

/1%

ptr = malloc(sizeof(long) * 10);

memset(ptr, 0, 10);

[*2*

ptr = calloc(10, sizeof(long));

realloc:

Reasigna una zona de memoria previamente dimensionada, o asigna una nueva en caso de que la zona gt
queramos redimensionar sea NULL.

Como parametros recibe:

void *ptr: Puntero a la zona de memoria que queremos redimensionar

size_t: bytes a dimensionar (Igual que en malloc).

Retorna un puntero a la nueva zona de memoria, hay que tener en cuenta que no tendra por qué ser la mis
gue antes, asi que siempre tenemos que igualar el puntero al valor de esta funcion. También hay que pens
que realloc lo que hace realmente es liberar esa zona de memoria y meter los datos en otra (si es menor nc
pasa nada y si es menor, evidentemente, los trunca).

Notas sobre la asignacion de memoria:

Suele ser interesante moldear el resultado devuelto por estas funciones, ademas asi nos evitaremos warnir
También hay que pensar que si se fragmenta mucho la memoria, es posible que nos fallen las llamadas, sc
todo si trabajamos en modo MS—-DOS (640K como maximo). También suele quedar mas curioso si en vez (
presuponer que van a funcionar las llamadas a estas funciones, evaluar el resultado con un if, si es NULL h
fallado y podemos informar al usuario y si no continuamos, ya que un intento de escritura en una zona de

memoria extrafia y se nos puede colgar el programa (o algo peor).

Otro problemilla, referente esta vez a realloc, es que si una llamada a realloc falla nos quedaremos con une

21

zona de memoria asignada a la que nadie apunta (Error: Null Pointer Assignement), para evitar esto,
podemos por ejemplo realizar la llamada a realloc con una variable temporal.

Ejempilo:

char *ptr = NULL;

char *tmp;

ptr = (char *) malloc(sizeof(char) * 10);

tmp = (char *) realloc(ptr, sizeof(char) * 20);
/* Comprobamos que no ha fallado */

if (tmp)

ptr = tmp;

Liberar la memoria asignhada:

Para liberar memoria asignada con las funciones anteriores (u otras basadas en estas) emplearemos:
free:

void free(void *ptr)

Tan s6lo debemos preocuparnos de que le pasemos en *ptr el puntero a la zona de memoria que queremo:
liberar.

[x
USO DEL MALLOC
By Jesls Arnaiz

*/

#include <stdio.h>
#include <string.h>
#include <malloc.h>
#include <conio.h>
int main(void)

{

char * ptr = NULL;

22

unsigned int n = 0;

printf("\n NUmero de caracteres: ");
scanf("%d", &n);

if (n)

{

if ((ptr = malloc((sizeof(char)*n) + 1)) != NULL)
{

inti;

memset(ptr, 0, (n + 1));
for(i=0;i<n;i++)

{

*(ptr + i) = getche();

}

free(ptr);

}

else

printf("Error asignando memoria\n");
}

else

printf("NUmero de caracteres no valido\n");
}

return (0);

}

* Memoria dispersa:
Como hemos visto en el apartado anterior, el principal problema de la asignacién de memoria dindmica, es

gue si empleamos varias llamadas, la memoria se queda fragmentada con lo que llegara un momento en el
llamadas fallen.

23

Para evitar esto emplearemos las técnicas de memoria dispersa.Lo que crearemos, sera una serie de
elementos en los que cada uno de ellos es capaz de direccionar al elemento que le sucede y/o al que le
precede.

Ejemplo de estructura auto-referenciada.

En el ejemplo de arriba, vemos que el primer elemento (X1), apunta al siguiente (X2) y asi sucesivamente
hasta el dltimo (X4) que apunta a NULL.

Listas:

Cada elemento necesita almacenar uno o dos punteros a una estructura del mismo tipo. A este tipo de
estructuras las llamamos estructuras autoreferenciadas, ya que cada una es capaz de referenciar a otra de
mismo tipo.

Lista encadenada:

Cualquiera de sus nodos referencia al nodo que le siguie, pero sélo a ese. (No puedo ir en sentido contraric

Ejempilo:

struct nodo

int dato;

struct nodo *siguiente;

Listas doblemente encadenadas:

Son idénticas a las anteriores, pero con la salvedad de que ademas de referenciar al elemento siguiente
también lo hacen al anterior:

Ejempilo:

struct nodo

int dato;
struct nodo *siguiente;

struct nodo *anterior;

Métodos empleados para trabajar con las listas:

24

Un dato que siempre tenemos que tener presente es el nodo raiz es decir el primer nodo de la lista.
Creacion del nodo:

Emplearemos la siguiente funcién (Crea_Nodo) que devolvera un puntero a nodo (el nodo gque acabamos d
crear) y a la que le pasaremos un dato del tipo que queremos almacenar en la lista (en los ejemplos int).

PNODO Crea_Nodo(intn)
{

PNODO nodo ;

nodo = (PNODO) calloc(1, sizeof(NODO)) ;
if (nodo)

{

nodo—>valor = n;

}

return (nodo);

}

Liberar un nodo:

Para liberar un nodo, nos bastara realizar una llamada a free pasandole como parametro el puntero al nodc
queremos liberar.

Insercién de un nodo:

Para insertar un nodo en la lista, en caso de que no esté ordenada, utilizaremos un algoritmo similar a la
siguiente:

PNODO actual, raiz;

(...)

/* Si no hay raiz este es el primer elemento */
if ('raiz)

raiz = actual = nuevo ;

else

{

actual—->siguiente = nuevo ;

25

actual = nuevo ;

Y para listas doblemente encadenadas:
if ('raiz)
raiz = actual = nuevo ;

else

actual—->siguiente = nuevo ;
nuevo—>anterior = actual;

actual = nuevo ;

Recorrer la lista:
Para recorrer la lista, nos bastara con el siguiente bucle.

while (‘actual)

printf("%d ", actual->valor) ;
raiz = actual ;
/* Paso al siguiente */

actual = actual->siguiente ;

Listas ordenadas:

Para trabajar con listas ordenadas, tenemos que tener en cuenta, que a la hora de insertar caben tres
posibilidades:

» Que sea mas peguefio que el primero (o sea el Unico)

» Que sea mayor que el tltimo
» Que esté por el medio de la lista

Si es mas pequeiio que el primero, nos basta con colocarlo como nodo raiz en la lista y ademas hacer que
siguiente sea el que hasta ahora era la raiz.

26

Los otros dos casos funcionan de la manera que indica el siguiente esquema.

Las funciones, basicamente, quedaran asi:

[x

Localiza la posicion en la que debe de ir un nodo
*/

PNODO Busca_Lugar(PNODO raiz, PNODO nuevo)
{

PNODO tmp = raiz;

PNODO actual = NULL;

while (tmp && tmp—>valor <= nuevo—->valor)

{

actual = tmp;

tmp = tmp—>siguiente;

}

return(actual);

}

/* Inserta un nodo en la lista */

PNODO Inserta_Nodo(PNODO raiz, PNODO nuevo, int (*cmp)())
{

PNODO tmp;

if ((tmp = Busca_Lugar(raiz, nuevo)) == NULL)
{

if (raiz)

raiz—>anterior = nuevo;

nuevo—>siguiente = raiz;

raiz = nuevo;

27

else

nuevo—>siguiente = tmp—>siguiente;
nuevo—>anterior = tmp;
tmp—>siguiente = nuevo;

if (nuevo—>siguiente)

nuevo—>siguiente—>anterior = nuevo;

return(raiz);

Eliminar un nodo de una lista doblemente enlazada:
Nos bastara fijarnos en el siguiente esquema, para saber como funcionara el borrado de un elemento.
Aln asi, hay que tener en cuenta, que se nos presentan tres casos posibles:

* Que el nodo esté a mitad de la lista

* Que sea el primero

* Que sea el ultimo

Para ello, nos bastara con comprobar: si el que queremos borrar tiene un nodo siguiente, al siguiente le
asignamos como anterior el anterior al que queremos borrar (fijarse en el esquema para no liarse).

Y si tiene anterior, al nodo anterior le decimos que su siguiente es el siguiente del nodo a borrar.

Para finalizar, nos basta comprobar que si el nodo a eliminar es el raiz, como la lista no puede quedarse sir
raiz, asignamos al nodo siguiente (que ahora sera el primero) como raiz de la lista.

PNODO Elimina_Nodo(PNODO raiz, PNODO elim)

if (elim—>anterior)
elim—>anterior—>siguiente = elim->siguiente;
if (elim—>siguiente)

elim—>siguiente—>anterior = elim->anterior;

28

if (elim==raiz)

raiz = raiz—>siguiente;

free(elim);

return(raiz);

}

Aumentando el nivel de abstraccion:

Al trabajar con las listas, deberiamos crearnos funciones lo mas genéricas posible, de manera que puedan
funcionar con cualquier tipo de dato, con pequefias modificaciones.

Estructura:

struct nodo

{

void *ptr_dato;

struct nodo *siguiente;

struct nodo *anterior;

} NODO, *PNODO;

Asignacién de datos:

struct nodo tmp;

tmp—>ptr_dato = (void *) n;

Comparar Datos:

/* Funcién dependiente del tipo de dato */

/* Devolveremos 0 1 o —1 segun si son iguales, el primero mayor
0 menor */

/* Ejemplo con datos tipo int */

int Compara_Datos(void *datol, void *dato2)
{

intret =0;

if ((int)datol < (int) dato2)

29

ret=-1
else

if ((int) datol == (int) dato2)

ret =0;
else
ret=1;

return (ret);

}

[* Version Hackers ;) */

int Compara_Datos(void *datol, void *dato2)
{

int a, b;

a = (int) dato1l,;

b =(int) dato2;
return(((a<b)?-1:(a==b)?0:1));

}

Como comentario, recordar que lo que se usa en el return de la funcién anterior, no es mas que el operadol
condicién, que funciona de la siguiente manera:

- Entre paréntesis va lo que se quiere evaluar.

- Lo que sigue a la interrogante "?' es lo que se ejecutara en caso de que se cumpla.
- En caso contrario se ejecuta lo que sigue a los dos puntos "'
Ejempilo:

#define NPERSONAS 3

int n = NPERSONAS;

/* Imprime el nUmero de personas, comprobando si hay que escribir

persona (1) o personas (el resto) */

printf(Hay %d persona%c\n, n, (n!=1)? s': \0");

30

Insercién de nodos:

Para la funcién de Insercién de nodo emplearemos un parametro tipo puntero a funcién para hacer esta
subrutina mas independiente.

/* Creamos como tipo de datos RUTINA_CMP que es un puntero a funcién */
typedef void (*RUTINA_CMP)();

/* Idéntica a las anterioriores, pero empleando la funcién cmp en vez

de las comparaciones */

PNODO Inserta_Nodo(PNODO raiz, PNODO nuevo, RUTINA_CMP cmp)

{

(..)

while (tmp && (*cmp)(tmp—>dato, nuevo->dato) < 1)
{

(..)

}

Nota: Esto de punteros a funciones es muy Util para rutinas de manejo de mendus, ya que un menu podria s
un vector de estructuras del siguiente tipo:

struct item

{

char titulo[TAM_MAX];

void *(*ptr)();

}

Y la llamada a la ejecucion de una opcion asi:

(*(menu[n].ptr))();

Colas y Pilas:

Se tratan de dos tipos de listas especiales.

Las Colas son las llamadas FIFO (First In First Out — Primero en entrar primero en salir) y su simil podria s

el de la cola del cine: el primero que llega, es el primero que sale de ella. Y para ellas utilizaremos unas
funciones denominadas generalmente:

31

PUT —> Meter un elemento en la lista

GET —> Extraer un elemento de la lista

Las Pilas son las denominadas LIFO (Last In First Out — Ultimo en llegar primero en salir) y funcionan
exactamente igual que una pila de bandejas, en la que la Gltima que dejas es la primera que cojes. Sus
funciones son las siguientes (os sonaran del manejo de la pila en ensamblador)

PUSH —> Meter un elemento

POP —> Extraer un elemento

Normalmente, tanto las pilas como las colas tienen una estructura denominada Cabecera o Head que suele
de la siguiente forma:

typedef struct

{

PNODO primero;

PNODO ultimo;

PNODO actual

} HEAD, *PHEAD;

A los nodos primero y altimo, se suelen llamar Head y Tail en las colas y Top y Bottom en las pilas.
Colas:

Como hemos dicho, las colas poseen dos funciones especificas que solemos denominar Get y Put, (por
sencillez, suponemos el tipo de dato int).

Put:
Para insertar un elemento en la cola, se pueden dar dos casos:

* Que no haya ningln elemento
* Que haya algin elemento

Si no hay ningun elemento, el nuevo elemento sera a la vez el primero y el Gltimo de la cola, luego
actualizaremos la cabecera con esos valores

Si hay algun elemento, hay que hacer varias cosas:

« El puntero siguiente del nodo ultimo debera apuntar al nuevo nodo.
« El puntero ultimo de la cabecera, pasara a apuntar también al nuevo nodo.

Con el esquema que expongo a continuaciéon se puede entender el proceso a la perfeccion.

Y La funcién, en C, quedaria asi:

32

PNODO Put(PHEAD Head, intn)

{

head->actual = Crea_Nodo(n);

if (head—>actual)

{

if (Thead—>primero)

head->primero = head—>ultimo = head—>actual,
else

{

head->ultimo—>siguiente = head—>actual;
head—>actual—->anterior = head—>ultimo;

head—>ultimo = head—>actual;

}
}

return (n);

}

Get:

Con Get extraemos el primer elemento de la cola, basicamente funciona, sacando el elemento y cambiandc
valores de la cabecera.

Pasos a sequir:

» Sacar el valor del primer elemento, que sera lo que devolvera la funcién.

« Almacenar de manera temporal un puntero al elemento a sacar.

« Hacer que el puntero primero de la cabecera apunte al elemento que sigue al primero.

* Liberamos el nodo.

« Hacemos que el puntero actual de la cabecera apunte al que ahora es el primero de la cola.

» En caso de que no haya mas elementos (no haya primero), hacemos que el puntero ultimo de la
cabecera apunte a NULL.

La funcién en realidad es mas sencilla de lo que parece, a continuacién esta el cédigo, tener en cuenta que
ha usado head—->actual como puntero temporal, pero so podria haber usado una variable tipo PNODO de I
misma manera.

int Get(PHEAD head)

33

{

intn=0;

if (head->primero)

{

n = head—>primero—>valor;
head—>actual = head—>primero;
head->primero = head—>primero—>siguiente;
free(head—>actual);
head—>actual = head—>primero;
if (Thead—>primero)
head—>ultimo = NULL;

}

return (n);

}

Aungue lo mejor para comprobar su funcionamiento, es ver un ejemplo completo. El que pongo a
continuacion es basicamente el que hemos empleado con las listas, pero modificado para trabajar con Colz
(los cambios son minimos).

[*

COLAS

By J.A.

*/

#include <stdio.h>

#include <stdlib.h>

#include <conio.h>

#include <string.h>

/* Estructura de los nodos */

typedef struct nodo

34

{

int valor;

struct nodo *siguiente ;

struct nodo *anterior ;

INODO, *PNODO ;

[* Cabecera */

typedef struct

{

PNODO primero;

PNODO ultimo;

PNODO actual;

} HEAD, *PHEAD;

PNODO Put(PHEAD head, intn);
int Get(PHEAD head);

PNODO Crea_Nodo(int valor) ;
void main(void)

{

HEAD head;

char str[4];

intn=0;

/* Inicializamos a 0 los valores de la cabecera —> Importante */
memset(&head, 0, sizeof(HEAD));
clrscr();

do

{

/* Capturamos un nimero a insertar o 0 para finalizar */

35

fgets(str, 4, stdin);

n = atoi(str);

if (n)

if (!Put(&head, n))

n=0;

}while (n);

/* Mostramos los elementos de la cola */
while ((n = Get(&head)) !=0)

printf("%d\n", n);

}

PNODO Put(PHEAD head, intn)

{

head->actual = Crea_Nodo(n);

if (head—>actual)

{

if (Thead—>primero)

head->primero = head—>ultimo = head—>actual,
else

{

head->ultimo—>siguiente = head—>actual;
head—>actual—->anterior = head—>ultimo;

head—>ultimo = head—>actual;

}
}

return (head—>actual);

}

36

/* Devolvemos el valor del elemento o 0 si no hay ninguno */
int Get(PHEAD head)

{

intn=0;

if (head—>primero)

{

n = head—>primero—>valor;

head—>actual = head—>primero;
head->primero = head—>primero—>siguiente;
free(head—>actual);

head—>actual = head—>primero;

if (Thead—>primero)

head—>ultimo = NULL;

}

return (n);

}

PNODO Crea_Nodo(intn)

{

PNODO nodo ;

nodo = (PNODO) calloc(1, sizeof(NODO)) ;
if (nodo)

{

nodo—>valor = n;

}

return (nodo);

}

37

Pilas:

Las pilas contienen dos funciones llamadas PUSH y POP. Cémo hemos dicho una pila funciona de manera
analoga a una pila de bandejas o platos, luego con PUSH colocaremos un plato en la pila 'y con POP lo
recuperaremos.

Esquematicamente estas funciones trabajan de la siguiente manera:

Push:

Para insertar un elemento en la pila, tenemos que realizar las siguientes comprobaciones:
* Si no hay elementos, el que insertamos es el primero y el Gltimo de la pila.
 Si hay elementos, hay que hacer que tanto el puntero a siguiente del tltimo de la pila como el punte

al ultimo de la cabecera apunten al nuevo elemento.

La funcién, que es muy similar a la empleada en las colas (Put), se expresa asi:

PNODO Push(PHEAD head, int n)

{

head->actual = Crea_Nodo(n);

if (head->actual)

{

if (Thead—>primero)

head->primero = head—>ultimo = head—>actual,

else

{

head->ultimo—>siguiente = head—>actual;

head—>actual—->anterior = head—>ultimo;

head—>ultimo = head—>actual;

}
}

return (head—>actual);

}

Pop:

38

Pop nos sirve para extraer el elemento que se encuentra en la parte de arriba de la pila (es decir el dltimo
insertado). Para ello, debemos realizar las siguientes comprobaciones:

» Primero asegurarse de que haya elementos en la pila (ya que ésta puede estar vacia en cuyo caso
simplemente devolveremos 0).

» Si hay elementos, extraemos el valor del Gltimo, éste sera el valor que devolvera la funcion.

» Salvaguardaremos un puntero al tltimo elemento

« Haremos que el puntero ultimo de la cabecera apunte al anterior al que era hasta el momento el
altimo.

* Liberaremos la memoria usada por el nodo a extraer (el altimo).

» Haremos que el puntero actual de la cabecera apunte al que era hasta el momento el anterior al Ulti

Si nos fijamaos, es muy similar a la funcién empleada en las colas (Get) con la salvedad de que aqui en vez
el primer elemento, extraemos el dltimo.

int Pop(PHEAD head)

intn=0;

if (head—>ultimo)

n = head->ultimo—>valor;

head—>actual = head—>ultimo;
head—->ultimo = head—>ultimo->anterior;
free(head—>actual);

head—>actual = head—>ultimo;

return (n);

Ahora veamos el mismo programa que antes, pero aplicando pilas en vez de colas.
/*

PILAS

By ??7?

*/

39

#include <stdio.h>

#include <stdlib.h>

#include <conio.h>

#include <string.h>

typedef struct nodo

{

int valor;

struct nodo *siguiente;

struct nodo *anterior;
INODO, *PNODO ;

typedef struct

{

PNODO primero;

PNODO ultimo;

PNODO actual;

} HEAD, *PHEAD;

PNODO Push(PHEAD head, intn);
int Pop(PHEAD head);
PNODO Crea_Nodo(int valor) ;
void main(void)

{

HEAD head;

char str[4];

intn=0;

/* Inicializamos la cabecera */

memset(&head, 0, sizeof(HEAD));

do

{

[* Capturamos un elemento, 0 para salir */
fgets(str, 4, stdin);

n = atoi(str);

if(n)

if ('"Push(&head, n))

n=0;

} while (n);

/* Mostramos todos los elementos de la pila */
while ((n = Pop(&head)) '=0)

printf("%d\n", n);

}

PNODO Push(PHEAD head, intn)

{

head->actual = Crea_Nodo(n);

if (head—>actual)

{

if (Thead—>primero)

head->primero = head—>ultimo = head—>actual,
else

{

head->ultimo—>siguiente = head—>actual;
head—>actual—>anterior = head—>ultimo;

head—>ultimo = head—>actual;

}

}

return (head—>actual);

}

int Pop(PHEAD head)

{

intn=0;

if (head—>ultimo)

{

n = head—>ultimo—>valor;

head—>actual = head—>ultimo;
head—>ultimo = head—>ultimo—>anterior;
free(head—>actual);

head—>actual = head—>ultimo;

}

return (n);

}

PNODO Crea_Nodo(intn)

{

PNODO nodo ;

nodo = (PNODO) calloc(1, sizeof(NODO)) ;
if (nodo)

{

nodo—>valor = n;

}

return (nodo);

}

42

Cabeceras de ficheros:

Para ver la importancia de las cabeceras cuando trabajamos con ficheros, veremas un caso practico. Un vi
de imagenes PCX.

Introduccién al modo grafico 13H:

Como para este ejemplo es necesario hacer uso del modo grafico, a continuacién se hace una pequefia
introduccion al modo 640x480 16 colores. Este modo fue uno de los empleados en las tarjetas VGA estand
como estas tarjetas disponian de planos de 64K, y debido a que 640x480x1 (bytes) son unos 300K, es deci
no caben, se creo lo que se llama profundidad de color. Para trabajar a 16 colores necesitamos una
profundidad de 4 bits. La profundidad no es mas que el nimero de planos de 640x480 de 1 bit que tendrerr
para representar cada color. Si tomamos un elemento cualquiera, por ejemplo el 20, de cada plano, el conjt
de los 4 planos formara el color del pixel 20.

Formato del fichero PCX:

Los datos de la imagen, estdn comprimidos con RLE (Run-Lenght Encode), que funciona de la siguiente
manera:

Cada byte tiene unos bits (en este caso los dos de mayor peso) que en caso de estar a 1 significa que el
siguiente dato se ha de repetir tantas veces como indiguen el resto de los bits. En caso de que no estén a]
trata de un pixel sin mas.

La cabecera del fichero esta formada por 128 bits, y la leeremaos con la siguiente estructura.

typedef struct

{

BYTE Header; /* Es un PCX? */

BYTE Version; /* Tipo de PCX (Colorl6 ...) */

BYTE Encode; /* Est comprimido o no */

BYTE BitPerPix; /* Niumero de bits para representar un pixel */

unsigned X1, Y1, X2, Y2; /* Pasicién */

unsigned Hres, Vres; /* Res Hor y Ver. aptima para visualizrla */

char Paleta[48];

BYTE Vmode; /* No se usa, era el modo de video de la imagen */

BYTE NumofPlanes; /* Niumero de planos de bits para representar un punto */

unsigned BytesPerLine; /* NEmero de bytes para analizar cada ljnea */

BYTE relleno[60]; /* No usado */

43

} PCXFileHeader;

Veamos ahora el programa completo:

[x

Visor de PCX

Coder: J.A.

*/

#include <stdio.h>

#include <string.h>

#include <dos.h>

#include <conio.h>

#include <malloc.h>

#include <graphics.h>

#define PCXHdrTag 10

#define STRIPSIZE 50

#define PCXMono 0

#define PCXColorl6 1

#define PCXColor256 2

#define MAX_BUF 32000

typedef unsigned char BYTE;

typedef struct

{

BYTE Header; /* Es un PCX? */

BYTE Version; /* Tipo de PCX (Colorl6 ...) */
BYTE Encode; /* Est comprimido o no */
BYTE BitPerPix; /* Niumero de bits para representar un pixel */

unsigned X1, Y1, X2, Y2; /* Pasicién */

44

unsigned Hres, Vres; /* Res Hor y Ver. aptima para visualizrla */
char Paleta[48];

BYTE Vmode; /* No se usa, era el modo de video de la imagen */
BYTE NumofPlanes; /* Niumero de planos de bits para representar un punto */
unsigned BytesPerLine; /* NEmero de bytes para analizar cada ljnea */
BYTE relleno[60]; /* No usado */

} PCXFileHeader;

char *ScreenLines[480];

char huge *ScanLine[480];

FILE *ReadPCXHeader(PCXFileHeader *, char *);

FILE *ReadPCXFile(FILE *, int, int);

int LeeLineaPCX(int, int, char huge *, int);

void PonLineaPixels(int, int, char huge *, int);

void PonModoGrafico(void);

void QuitaModoGrafico(void);

void InitScreenLines(void);

void VgaPlane(int);

int main(int argc, char **argv)

{

FILE *fp;

PCXFileHeader hPCX;

unsigned int ancho, alto, bytes;

register int i,

int ret;

if (argc<2)

return 1;

45

fp = ReeadPCXHeader(&hPCX, argv[1]);
if (fp)

{

ancho = hPCX.X2 - hPCX.X1 + 1,

ancho = (ancho +7) & ~7;

alto = hPCX.X2 - hPCX.X1 + 1,

bytes = hPCX.BytesPerLine * hPCX.NumOfPlanes;
PonModoGrafico();

InitScreenLines();

ReadPCXFile(fp, alto, bytes);

for (i=0;i<alto; i++)

{

PonLineaPixels(i, ancho / 8, scanline[i], hPCX, NumOfPlanes);

farfree(scanline[i]);
}

getch();
QuitaModoGrafico();

}

return(ret);

}

FILE *ReadPCXHeader(PCXFileHeader *, char *)
{

FILE *fp;

if ((fp =fopen(filename, "rb")) == NULL)

return (NULL);

if ((fread(hPX, 1, sizeof(PCXFileHeader), fp)

46

I= sizeof(PCXFileHeader))
{

fclose(fp);

return(NULL);

}

if ((hPCX = Header) |I= PCXHeaderTag)
{

fclose(fp);

return(NULL);

}

return(fp);

}

void PonLineaPixels(int fila, int bytes, char huge *ptr, int nplanos)
{

register i;

int offset, inc;

int planos[4] ={1, 2,4, 8};

for (i=0 ; i<nplanos ; i++)

{

offset =i * bytes;

inc=((bytes%2)==0)7?0:1;

VgaPlane (planos]i]);

memcpy(screenlines(fila], ptr + offset + inc , bytes);
}

}

int LeeLineaPCX(char huge *ptr, FILE *fp, unsigned int bytes)

47

{

intn=0;

register short c;
unsigned rep;

do

{

¢ =getc(fp);

if (c == EOF)
return O;

if ((¢ & 0xC0) == 0xCO)
{

rep = x & ~0xC0;
¢ =getc(fp);

if (c==EOF)
return O;

while (rep——)
ptr[n++]=¢;

}

else

ptr[n++]=¢;

}

while (n < bytes);
return n;

}

FILE *ReadPCXFile(FILE *fp, int lineas, int bytes)

{

48

register int i,

for(i=0;i<lineas;i++)

{

ScanLine[i] = (char huge *) farmalloc (80 * 4);
}

}

void PonLineaPixels(int fila, int bytes, char huge *ptr, int bytes)
{

register int i,

int offset, inc;

int planos[4] ={1, 2,4, 8};

for (i=0;i<nplanos; i++)

{

offset =i * bytes;

inc=((bytes% 2)==0) ?0:i;

VgaPlane(Planos]i]);

memcpy(ScreenLines|fila], ptr + offset + inc, bytes);
}

}

[x

Hace uso de un driver creado con bgiobj
MS-DOS:

bgiobj egavga.bgi

*/

void PonModoGrafico(void)

{

49

int gdriver = DETECT, gmode, errorGr;

errorGr = registerbidriver(EGAVGA _driver);

if (errorGr>-1)

initgraph(&gdriver, &gmode, ");

else

printf("Error al intentar inicializar el modo gr fico\n");

}

void QuitaModoGrafico(void)

{

orecrtmode();

}

[x

Inicializa el puntero al comienzo de cada ljnea de la
memoria de video

hay 80 bytes por linea (640 / 8 = 80)

*/

void InitScreenLines(void)

{

inti;

for(i=0;i<480;i++)

ScreenLines[i] = MK_FP(0xA000, i * 80);

}

[x

Conmuta el plano

REG 0x3C4 —> 0x02 —> Para cambiar de plano

REG 0x3C5 —> NEmero de plano al que quiero que cambie

*/

void VgaPlane(intn)

{

outportb(0x3C4, 0x02);
outportb(0x3C5, n);

}

Arboles:

Un arbol esuna estructura recursiva de datos en la que cada nodo puede tener 0, 1 0 mas descendiantes y
sucesivamente.

Los arboles, estan ordenados de alguna manera (Segun se van insertando).

Los nodos que estan por debajo de otro son sus descendientes.

Los que estan justo debajo son sus descendientes directos.

Antecesores: los nodos que tiene por encima.

Antecesores directos: los nodos que estan un nivel por encima.

Arbol binario: aquel en el que todos sus nodos tienen como mucho dos hijos. (descendientes directos).
Arboles multicamino: alguno de sus nodos tiene méas de dos nodos hijos.

Grado del arbol: n°® maximo de hijos que tiene un nodo.

Altura: Namero de niveles.

Longitud de camino de un nodo: n°® de saltos que ha de dar desde el nodo raiz para posicionarse en ese
nodo.

Arboles binarios:
Bajando por la derecha de un nodo, son mayores a éste, y por la izquierda menores.
Un arbol esta equilibrado, cuando el subarbol izquierdo y el derecho difieren como mucho en un nodo.

Arbol degenarado: no cumple la regla de las alturas: en el Gltimo nivel no deberia haber por encima de él
mas alturas que las imprescindibles.

Arbol balanceado: (AUL) cada vez que se inserta un elemento se registra para no violar la regla de las
alturas.

Arbol equilibrado: cuando el subarbol izquierdo y el derecho difieren como mucho en un nodo.

51

Lectura de un arbol:

Pre—Orden: (Prefija) raiz — izquierda — derecha +23
In—Orden: (Infija) izquierda — derecha - raiz 2+3
Post-Orden: (Postfija) izquierda — derecha - raiz 23+
Arbol B+:

Se emplean cuando no sabemos el nimero de hojas (nodos) que tendra. En vez de crecer de la raiz hacia
abajo, en este caso crece de las hojas hacia la raiz.

Un uso tipico es el de los indices de las bases de datos.
Ejempilo:
Defino la pagina de por ejemplo de 9 elementos.

Cuando se llena la pagina, se procede de la siguiente manera: el elemento del centro lo colocamos como p
de dos hijos: los de la izquierda (menores) y los de la derecha(mayores).

Elementos menores mayores
Ejemplo practico de arbol.
[x

21/12/99

Jesus

*/

#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
typedef struct nodo

{

int info;

struct nodo *left;

struct nodo *right;

} NODO, *PNODO;

52

PNODO MakeTree(int n);

void SetLeft(PNODO p, intn);
void SetRight(PNODO p, intn);
[* Formas de recorrer el arbol */
void PreOrden(PNODO raiz);
void InOrden(PNODO raiz);
void main(void)

{

PNODO tree = NULL;

PNODO p, q;

int num;

char str[21];

do

{

fgets(str, 21, stdin);

if ((num =atoi(str))!=0)

{

if (!tree)

tree = MakeTree(num);

else

{

p =q = tree;

while ((num = p—>info) && (g !'=NULL))
{

pP=0q;

if (num < p—>info)

q = p—>left;

else
q = p—>right;
}

if (num == p—>info)

printf("Error, %d ya existe\n", num);
else

{

if (num < p—>info)

SetLeft(p, num);

else

SetRight(p, num);

}

}

}

} while (num);

PreOrden(tree);

}

/* 1zquierda Derecha Raiz */
void PostOrden(PNODO raiz)
{

if (raiz)

{

PostOrden(raiz—>left);
PostOrden(raiz—>right);

printf("%d\n", raiz—>info);

54

}
}

/* Raiz lzquierda Derecha */
void PreOrden(PNODO raiz)
{

if (raiz)

{

printf("%d\n", raiz—>info);
PreOrden(raiz—>left);
PreOrden(raiz—>right);

}

}

/* 1zquierda Raiz Derecho */
void InOrden(PNODO raiz)
{

if (raiz)

{

InOrden(raiz—>left);

printf("%d\n", raiz—>info);
InOrden(raiz—>right);

}

}

PNODO MakeTree(intn)

{

PNODO p;

p = (PNODO) calloc(1, sizeof(NODO));

55

if(p)
p—>info = n;
return (p);

}

void SetLeft(PNODO p, intn)

{

if (p==NULL)

printf("Inserci¢n NO efectuada\n™);
else

{

if (p—>left I= NULL)

printf("Inserci¢n NO efectuada\n™);
else

p—>left = MakeTree(n);

}

}

void SetRight(PNODO p, intn)

{

if (p==NULL)

printf("Inserci¢n NO efectuada\n™);
else

{

if (p—>right != NULL)

printf("Insercion NO efectuada\n™);
else

p—>right = MakeTree(n);

56

En el programa, podemos ver que las funciones dedicadas a recorrer el arbol, trabajan de forma recursiva,
decir, son funciones que se llaman a si mismas.

Algunas notas sobre la practica:

Aqui voy a intentar reunir algunas de las ideas que se han expuesto en clase sobre la practica (Programa p
manejar bases de datos tipo DBASE).

Cabecera del fichero:

Cada tabla (o base de datos) estara contenida en un fichero, este fichero debe tener como estructura basic
siguiente:

Siendo los datos, los datos en si del fichero y la cabecera una serie de parametros que definiremos
previamente y que podremos leer/escribir empleando una estructura (struct).

Pasemos a ver con mas detalle gue campos o parametros podria contener la cabecera (estos son sélo un
ejemplo, se pueden poner muchos mas).

El Magic Number es, o nimero magico, no es mas que un niamero que emplearemos para certificar que es
fichero es del tipo que nosotros queremos manejar. (Dandole el valor que mas nos guste).

El Offset datos es un valor que nos indica a partir de que posicion del fichero empiezan los datos en si del
mismo.

Los struct campo seran unas estructuras que hemos creado previamente, para contener los datos que
identifican a un campo dentro del registro, por ejemplo algunos podrian ser:

Tipo: (Entero, Real, Fecha ...)
Longitud: 10, 1, 30 ...
Decimales: 0, 2 ...

Nombre: Direccion, Nombre ...

Offset: 10, ... (Desplazamiento con respecto al registro)

El offset dentro del registro, funcionaria asi:

Es decir si leemos un registro en un buffer (un array de chars) cuantos char a la derecha del principio, se
encuentra cada campo.

La cabecera deberia contener también valores como el nimero de campos que contiene la tabla (para sab
cuantos leer luego).

Notas sobre el fichero en si:

57

Al anadir registros, deben de ir al final del mismo. Si lo que hemos hecho ha sido modificarlo, lo dejamos
donde estaba.

El fichero siempre contiene algo (como minimo la cabecera).

Para manejar el fichero, y si quieres complicarte la vida, puedes emplear técnicas de caché, ficheros de inc
y un sinfin de cosas.

Sobre la pila de ventanas:
Si vamos a implementar rutinas de pantalla con pila de ventanas, hay que tener en cuenta unas cuantas co
Para empezar, las funciones de esta pila varian levemente, PUSH se quedaria como estaba, pero la funcié
POP deberia recibir un parametro mas tipo entero en el cual especificar un identificador de ventana (o 0 pa
sacar la que esta encima).

Los ids. de las ventanas comenzaran en 1 (para poder referirnos a la de arriba con 0) y para saber si un id.
elegido o0 no podemos emplear un bitset:

char bitset[4]; /* Para tener 32 identificadores distintos */
(Los id. sin seleccionar estan a 0 y los seleccionados a 1).

Para manejar esto, debemos crearnos macros que a partir de un caracter y un bit nos devuelvan su valor
boleano (1 o 0).

Captura de una tecla:

Veamos este sencillo algoritmo: se trata de capturar una pulsacion del teclado, pero en MS-DOS los
caracteres normales ocupan un char y los especiales 2 devolviendo a la primera captura de getch() 0. Para
crearemos una funcion que devuelva un entero, los caracteres normales seran de la forma:

0x0091 ->("a'o...)

y los especiales

0xA000 —> (cursor arriba ...)

veamos como implementarlo en lenguaje C:

int getkey(void)

{

int tecla = 0;

tecla = getch();

if ('tecla)

tecla = getch() << 8; /* Los 8 bits del primer byte */

return (tecla);

58

luego, dentro del programa deberiamos crearnos defines con las teclas a emplear como el Intro Escape y e
Estructura de un campo:
Esta podria ser la estructura de un campo si contemplamos como tipos genéricos la cadena el entero y el r

struct

int tipo;
int len;

union

char *str;
int n;
double v;

} dato;

Pero esta claro que el mejor método (y en realidad el mas sencillo de manejar), es el de almacenar todos Ic
datos de un campo como puntero a char (cadena), ya que asi podemos escribir y leer de los ficheros los da
y para trabajar con ellos no tenemos mas que usar las funciones que nos brinda el C para conversioén (libre
ctype.h).

Campos tipo fecha:

Ya hemos llegado a la conclusion que debemos almacenar todos los campos como cadenas (punteros a ct
pero el de fecha, nos es mucho mas practico almacenar al contrario de cémo lo escribimos aqui en Espafia
vez 18102000 — poner 20001018) es decir, de la forma AAAAMMDD ya que esto nos automatiza las
comparaciones entre fechas.

Recursos Distribuidos:

Tenemaos, por ejemplo una red homogénea de sistemas tipo Windows:

Desde el ordenador B queremos ejecutar el Windows Commander que se encuentra en la maquina A, para
una forma cutre pero que de momento nos serviria, seria la que muestra el esquema, que es simplemente

trasladar el Windows Commander a la memoria principal de B para ejecutarlo en local desde B.

Pero los problemas empiezan cuando esta red no es homogénea, sino heterogénea (como son la mayoria
redes, por ejemplo Internet). Bueno, para ello deberiamos crear una interfaz mediante la cual yo diese una

59

orden de ejecucién desde B con una serie de argumentos a un programa que se haya en Ay A debe devol
el resultado obtenido, sin tener que preocuparse B del cémo.

Para resolver este tipo de problemas han aparecido un par de estandares:
OLE/COM y CORBA.
OLE/COM:

Fue el primero de los dos en aparecer, nacié de la mano de Microsoft debido a las necesidades. OLE (Obje
Linked and Embeded).

Un ejemplo de uso de OLE puede ser un documento de texto que contenga una grafica (de Excel p.gj.), el
procesador de textos no sabe como se representa, pero el objeto en si mismo si. Ya que al insertar el objet
guardan los datos y los procedimientos necesarios para manejarlo.

El OLE/COM acabé generando DCOM (Distributed Component Object Module) ya que OLE sdlo podia
trabajar con servicios de la propia maquina.

DCOM:

Puede trabajar lo mismo que OLE, pero al contrario que este, puede hacerlo en maquinas remotas. A raiz c
este Ultimo se creo el engendro del ActiveX (Que por cierto ademas de no trabajar mas que con maguinas
Windows, no acaba de funcionar bien).

ActiveX:
ActiveX al ser propiedad de Microsoft no estd muy extendido, debido a las licencias necesarias para su uso
CORBA:

CORBA (Common Object Request Broker Access) no es propietario (no es de nadie) y esta implementado
practicamente todos los SO conocidos: AS/400, Solaris, Linux, Windows ...

Diferencias esenciales entre CORBA y ActiveX:

« Un objeto OLE es su propio servidor.
« CORBA sin embargo pone una capa intermedia entre el Cliente y el Servidor, llamada ORB (Object
Request Broker)

< Para manejar el ActiveX tienes un interfaz fijo: llamadas a lunknow que devuelve una VTABLE
(Tabla Virtual de procedimientos que posee el servidor de ActiveX).

 El ActiveX es sencillo de implementar en SoftWare ya disefiado, eso si con POO (Programacion
Orientada a Objetos), ya que si no es POO es muy complicado.

*« CORBA emplea unos mecanismos llamados IDL (Interface Definition Language) para implementar
tanto un cliente como un servidor. De esta manera, al crear el cliente se define una clase publica qu
se exportara y se incluira en el cliente para poder acceder a los métodos de la misma. Esta manera
trabajar, entre otras cosas, hace que si creamos una nueva version del Servidor, Clientes viejos pue
seguir trabajando con él.

« ActiveX puede trabajar con C++, VB, quiza C y puede que algun lenguaje mas.

» CORBA admite casi cualquier lenguaje de programaciéon: FORTRAN, COBOL, C, C++ ... (El IDL es
un lenguaje de script similar a C++ o0 Java).

60

« ActiveX no permite herencia es decir si tenemos un ActiveX que haga algo y queremos implementat
otro que haga ese algo y un poco mas, tenemos que reescribirlo entero.

» CORBA si permite herencia con las ventajas que esto supone. (S6lo reescribiriamos lo nuevo, lo
demas podriamos hacer que lo heredase).

Interfaces gréficas de usuario

Los primeros interfaces eran modo texto, y estaban preparados para la programacion lineal (secuencial). E:
cambio con la aparicién de un nuevo periférico, el ratén

El primer interfaz de usuario lo cred Xerox en Palo Alto, tiempo después, Machitosh se basé en esto
implementando un interfaz sélo grafico.

Vamos a analizar dos tipos distintos de interfaces graficos: Windows (3.1, 95, NT, 98 ...) para el cual
necesito una copia de Windows en cada maquina para poder trabajar, y cuya multitarea es un hibrido entre
de tipo cooperativa y la preventiva.

X-Window:

Trabaja con la familia de los UNIX (Ultrix, Solaris, Linux ...), se desarrollé en el MIT (Massachuses Institute
of Technology).

Esta basada en el modelo cliente/servidor, de manera que el servidor ejecuta el programa y devuelve el
resultado al cliente. Se pretende que los programas funcionen con casi cualquier hardware.

Para esto, es necesario un disefio por capas, ya que en un principio, los interfaces graficos, tenian que trak
directamente con el hardware de video de la maquina.

La forma antigua y la moderna de trabajar estan esquematizadas en la siguiente imagen.

De esta manera, el programa llama a unas funciones genéricas que el driver se encargara de traducir para
la pantalla las entienda. En teoria seria el fabricante el que sacase drivers para sus tarjetas.

Con respecto a los interfaces graficos, IBM cred unas normas:
SAA (System Aplication Architecture) y CUA (Common Used Access):
Las cuales, son seguidas por casi todos los interfaces graficos de usuario. En ellas se especifica:
* Como han de ser las ventanas
* Qué contienen
« En que orden aparecen las cosas
Con esto se obtiene como ventaja identificar rapido los items, pero vemaos varias desventajas: se consumer

muchos mas recursos, muchas veces muestran demasiada informacion, supone una forma mas complicad:
trabajar para los programadores.

Rutinas de busqueda:

Se emplean para localizar un dato en un conjunto de ellos, que pueden estar o no ordenados.

Tipos generales de busquedas:

61

Son tres: Secuencial, Binaria y Secuencial-Indexada. Su manera de trabajar es la siguiente:
Secuencial:

Teniendo n elementos, efectlo la basqueda posicionandome en el primero y recorriéndolo hasta el final o
hasta que encuentre el dato. Para este tipo de blsqueda los datos pueden o no estar ordenados.

Binaria:

Se trabaja con un conjunto ordenado de datos, y lo que se hace es subdividir el conjunto de ellos en dos pe
comparando y pasando a buscar en una de las dos (segun si es mayor 0 menor).

Secuencial Indexada:

Es una mixta entre las dos anteriores. Funcionan sobre datos ordenados o desordenados.

Lo que se hace, es tener por un lado los datos, y por otro lado n (niUmero de registros) claves ordenadas gL
referencian a esos datos. De este modo, para buscar, primero miro en el indice (que esta ordenado), y lueg
paso a leer (con la referencia) los datos.

Implementacion de los algoritmos:

Busqueda Secuencial:

/* Busqueda secuencial */

#include <stdio.h>

intm[]={6,4,8,4,6,7}

int busca(int m[], intn, intc);

int main(void)

{

char str[11];

int n;

fgets(str, 11, stdin);

n = atoi(str);

printf(%d\n, busca(m, sizeof(m) / sizeof(m[0]), n);

return (0);

}

int busca(int mf], intn, intc)

62

{

intr=-1;

inti;

/* Buscamos hasta o bien encontrar el elemento o llegar al final */

for(i=0;(i<n)&&(r==-1);i++)

if (mfij==c)

r=i;

return(r);

}

Notas:

El nimero de elementos que posee el vector, se ha obtenido dividiendo el tamafio total del vector (sizeof(n
entre el tamafio de uno de sus elementos (sizeof(m[o])), por poner un ejemplo sencillo: si el vector ocupa 8

cada uno de sus elementos 2, tiene 4.

El algoritmo de busqueda (al igual que en el siguiente ejemplo) devuelve (-1) si no lo encuentra o la posicic
del vector (comenzando en 1 no en 0) en donde esta la primera ocurrencia.

Blusqueda Binaria:

int binaria(int n, int m[], int tam)
{

intiz=0, de=tam - 1;
int medio;

while(iz <=de)

{
medio=((iz+de)/2);
if (m[medio] <n)
iz=medio + 1;

else

{

if (m[medio] >n)

63

de = medio - 1;
else

return (medio + 1);

return (- 1);

Métodos de ordenacion:
Se tratan de métodos encargados de ordenar una lista homogénea de elementos de manera ascendente o
descendente.
Nos encontramos con tres tipos basicos, aunque aparecen mezclas de ellos:
* Intercambio
* Seleccion
* Insercion
La eficiencia de un método, se mide en el tiempo medio de ordenacion, ya que algunos métodos son mas
eficientes que otros en ciertas circustancias (listas cortas de elementos, listas ordenadas en parte...) y en o
no. Por citar un ejemplo, la burbuja es uno de los métodos mas eficientes cuando se trata de una lista corta
elementos, y asi mismo es uno de los peores cuando las listas son largas, es por esto por lo qué mediremo
eficiencia siempre por el tiempo medio.
Ejemplos de métodos:
Intercambio: Burbuja, Quicksort.
Seleccion: Seleccion de minimos.
Ordenacion: Shell.
Implementacion:
Ordenacion mediante método burbuja:
#include <stdlib.h>
#include <stdio.h>

#include <time.h>

#include <conio.h>

64

#define MAX 10

int dato[MAX];

void Burbuja(void);

void main(void)

{

inti;

clock_tinicio, fin;

clrscr();

/* Fijamos la semilla inicial */

srand((unsigned) time(NULL));

/* Cargamos el vector de aleatorios 0 — 99 */
for (i=0;i<MAX;i++)

Dato[i] = (rand() % 100);

/* Mostramos el vector */

for (i=0;i<MAX;i++)

printf(%2d , Dato][i]);

inicio = clock();

burbuja();

fin = clock();

/* Mostramos el tiempo invertido (en s.) */
printf(%f\n, (fin — inicio) / CLK_TCK);
/*'Y mostramos el vector ordenado */
for (i=0;i<MAX;i++)

printf(%2d , Dato][i]);

}

void Burbuja(void)

65

{

inti, j;

int v,

[* Para cada posicién buscamos el elemento mas pequefo de la lista por su derecha */
for (i=0;i<MAX;i++)
for (j=i+1;j<MAX;j++)
{

if (Dato[i] < Dato[i])

{

v = Datoli];

Dato[i] = Datol[j];

Dato[j] = v;

}

}

}

Notas:

Clock devuelve el niamero de ciclos de reloj desde que se encendi6 el ordenador. (18-19/s.).
CLK_TCK es una constante que nos indica el nimero de ciclos de reloj que hay por segundo.
Funcién burbuja genérica:

Ahora pretendemos conseguir una mayor abstraccion y portabilidad de nuestra funcién de ordenacién por €
método burbuja:

Prototipo:
void Burbuja(void *item, int n, int (*cmp)(void *, void *));

hay que tener en cuenta que no podemos hacer item++ para avanzar (ya que void significa vacio no se sab
tamario del item).

Debemos emplear un tipo de dato que sea del mismo tamafio en todos los sistemas de hardware, en C el (
dato con estas caracteristicas es el char que siempre ocupa 1 byte.

Ahora necesitamos pasar un argumento mas a la funcion: el tamafio en bytes del tipo de dato a ordenar.

66

void Burbuja(void *item, int n, int (*cmp) (void *, void *), unsigned int s)
{

char *ptr = (char *) item;

char c;

inti, j, t;

for(i=0;i<n;i++)

{

for(j=i+1;j<n;j++)

{

if ((*cmp) ((void *) &ptr[i * s], (void *) && ptr[j*s]) >0)
{

for(t=0;t<s;t++)

{

i = ptr[i *s +1];

ptr[i * s + t] = ptr[j * s + t];

ptr[j *s +tf] = c;

}

}

Notas:

Debido a que a priori no sabemos el nUmero de bytes que formara cada elemento, lo trasladamos byte a by
cuando realizamos el intercambio.

La rutina de comparacion variara de un tipo de datos a otro, pero nos bastara saber que hemos de devolve
TRUE cuando el primer elemento sea mayor y FALSE en el resto de los casos.

Rutina de comparacién de enteros:

67

int cmp_int(void *datol, void *dato2)
{

if (((int)datol)>((itn) dato2))
return(1);

else

return(0);

}

100

200

300

400

500

600

68

———————~ ——————™
Elemento3 Elemento2 Elemento1
|1— |4—
o
Elemento4 Cabecera
El tod > El to3 > El to2 > El to1
emento emento emento emento
Cabecera

.//_\.//_\./’_\
/v\/‘

E1

NULL

E4

69

T
1/
/.

70

———————~ ——————™
Elemento3 Elemento2 Elemento1
|1— |4—
o
Elemento4 Cabecera
El tod > El to3 > El to2 > El to1
emento emento emento emento
Cabecera

71

Elemento4

-

Cabecera

PUSH

—

Cabecera

POP

_—
T

—

/'

[}

o

—
o/

Elemento3

v T

Elemento?2

Elementoil

o T

Elementod

vy 4

Elemento3

vy *

Elemento?2

vy 1

Elementotl

Elementod

Cabecera

Elemento3

vy *#

Elemento?2

vy 1

Elementol

72

Cabecera + 48 bytes Imagen

RGB (Palketa siest a
255)

Bits

N mero de veces que hay que repetir (18)

4

Nodo

Nodos terminales

73

3|4|5]|8[10]12
10
3| 4 5| 8 12113 |15 22
Cabecera Datos

Magic Number /

Offset datos

/

struct campo1

/

struct campo2

Offsets de cada campo dentro de un registro

Campot

Cc2

Campo3

C4

Campo5

Win

=

Win

1D

Win

74

Objeto OLE

>

Cliente

l Pide el servicio que quiere usar

ORB

l Busca el que mejor se ajuste a sus necesidades

Servidor
Programa Programa
l T Driver
Hardware ¢ T
Pantalla

Datos

ndices

NUmero de elementos

75

