PROGRAMACION DE SISTEMAS
CAPITULO I: SUBSISTEMAS DE UN SSOO

* Principios Generales

 Sistemas locales y en red

* Integracion de plataformas (POSIX).
« Herramientas de ayuda al desarrollo.

* Make

e DLL/ar

e Compilador

» Control de versiones.
» Depurador simbdlico.

1.PRINCIPIOS GENERALES
El Unix system5 Release4 proviene de cuatro ramas:
— AT&T. Con su sistema SVR3
—Microsoft. Realmente Microsoft dejé este sistema para pasar al WIN NT.
—Sun Microsystems.
—Universidad de Berkeley. Con su sistema BSD4.2
Las principales caracteristicas del UNIX S5R4 son:
* Procesamiento en Tiempo Real
« Incorporacion de distintos tipos de planificador de tareas.
* Mejora de la Memoria Virtual
* Mejora en la interfaz del manejo de interrupciones software
 Asignaciéon dinamica de memoria para los procesos del sistema
» Mayor nimero de archivos procesables simultAaneamente por cada proceso. En el SVR3 la cantidad
maxima estaba limitada a 20 (3 del sistema, 17 libres). En el SVR4 el manejo de archivos se realiza
de modo dindmico, de modo que no hay limitacién de archivos procesables simultaneamente.
« Aparece el Sistema Virtual de Archivos VFS (Virtual File System).
« Interfaz estandar de funciones y estructuras para el disefio de los controladores de dispositivo

(drivers).
« Incorpora la posibilidad de controlar varias CPUs con la misma prioridad (procesamiento simetrico).

El Subsistema de SVR4 esta formado por tres componentes:
- Gestion de Archivos
- Gestion de Procesos

— Gestion de la Entrada/Salida

SUBSISTEMA DE PROCESOS

Es un conjunto de rutinas del sistema que permite la gestion de varias actividades. Permite varias
funcionalidades:

» Gestion de la CPU. Se encarga de sacar y meter los procesos en la CPU.

« Debe permitir a los programas de usuario el acceso a las primitivas del Kernel (system calls).

» Realizar las operaciones de swap—in y swap—out. Esto es lo que permite sacar de la CPU tareas qu
han consumido su tiempo de CPU o que necesitan realizar operaciones de 1/0. Debe poder guardar
esta tarea en el area de swapping y cuando llegue el momento de meterla en CPU, se encargara de
planificar la entrada.

 La incorporacién mas importante es la Técnica de Intercomunicacion entre Procesos:

- Tuberias sin nombre.

- Tuberias con nombre.

— Sefiales 8Interrupciones Software)

- Entornos (Tablas de Variables y Datos de Procesos hijos a padres)

— Técnica de IPCS

- Segmentos de Memoria Compartida (shm)

- Colas de Tareas (msgQ)

- Semaforos (sem)

- Paso del Testigo ("Passing de Buck").

SUBSISTEMA DE ARCHIVOS

El Subsistema de Archivos es un conjunto de areas administrativas de disco, de bloque de almacenamientc
disco y de algoritmos que permiten la rapida y comoda gestién de los archivos de un usuario. Las funciones
claras son:

« Mantener las estructuras necesarias para el tratamiento y acceso a los archivos de disco.

« Mantener los buffers necesarios para agilizar los accesos a disco(vnodes y vfs).

 Ejecutar las funciones necesarias para el manejo de archivos (open, ...).

SUBSISTEMA DE ENTRADA/SALIDA

Es el responsable final de la gestidn de todos los requerimientos de I/O realizados por los usuarios.
Funcionalidades bésicas:

» Gestion en modo caracter o bloque de los dispositivos fisicos.

« Proporcionar la estructura de buffers necesaria para realizar estas operaciones de 1/0O
« Posibilidad de definir e incorporar nuevos controladores de dispositivo al sistema

« Gestionar las interrupciones necesarias para acceder a estos dispositivos perifericos.

2. SISTEMAS LOCALES EN RED

Hasta el que aparecié el SVR4 el UNIX era un SSOO local y solo podia comunicarse con otros sistemas co
UUCP (Aplicaciones de comunicacién de nivel OSI 7). Esto ya no se usa porgue se ha definido, en SVRA4,
unos protocolos TCP/IP.

Existen un conjunto de funciones TLI (Transport Level Interface) que estan orientados al desarrollo de
aplicaciones. Permiten el establecimiento de comunicacion entre varias maquinas.

Esto llevé a crear un sistema XDR que permite la transmisién de datos con formato (Reales, Doble precisi6

Enteros, ...). Las funciones RPC fueron disefiadas en SUN Microsystems. Son primitivas de nivel OSI 7 que
permiten ademas desarrollar aplicaciones que estan en dos maquinas.

3.INTEGRACION EN PLATAFORMAS (POSIX)

Existe un comité que es el POSIX, que establece el conjunto de funcionalidades definidas como estandar p
que en cualquier plataforma sea posible el desarrollo de aplicaciones software con independencia de las
plataformas en que se han desarrollado.

4. HERRAMIENTAS DE AYUDA AL DESARROLLO

CC es el compilador que vamos a utilizar en UNIX. Los archivos .c van a ser los archivos fuente, y los
archivos .0 son los objeto. Por defecto al compilar con CC se crea el ejecutable a.out.

CCal.ca2.ca3.c...ak.c ==>a.out

Se pueden mezclar al compilar archivos objeto y archivos fuente. Esto puede ser Gtil cuando un fuente falla
los demas no; variamos el que falla y luego lo compilamos con los objeto que no han fallado sus fuentes y ¢
ganamos tiempo de compilacion.

CCal.ca2.0a3.0...ak.o ==>a.out

Para variar el nombre del ejecutable que vamos a producir debemos utilizar la opcién —o

CC -oejeclal.c...ak.c

Para generar archivos objeto (extension .0) y no generar el ejecutable deberemos utilizar la opcién —c. CC -
al.c a2.c ... ak.c . En este caso no debemos poner el archivo que contiene el main para que se pueda utiliz
estos objeto en otros programas.

PREPROCESADOR ENSAMBLADOR

Fuente CC -P fuente.c fuente.i CC -S fuente.{c,i}

Fuente.s

EDITOR DE ENLACES COMPILADOR

CC fuente.{c,i,s,0} Fuente.o CC -C fuente.{c,i,s}

a.out

PROCESO DE COMPILACION AUTOMATICA (MAKE)

Si tenemos cientos de mddulos utilizar CC puede llegar a ser muy engorroso ya que si falla alguno, deberel
volver a escribir la linea entera que puede ser muy extensa. Para evitar esto disponemos de la técnica de Ic
make (makefiles).Vamos a verlo con un ejemplo. Suponemos:

Xx.c —— # include "def.h" y.c .. # include "def.h" z.c

$vi makefile

Makefile

ejec: X.0y.0 2.0

CC x.0y.0z.0 -0 gjecl

X.0: X.c def.h

CC -cx.c

y.o: y.c def.h

CC-cy.c

z.0:z.c

CC-cz.c

"D

Si escribo $make y en el directorio existe makefile(o Makefile) ejecuta lo que encuentre dentro. También se
puede llamar de otra manera y luego ejecutarlo con $make nombre.

DEPURADOR SIMBOLICO. SDB
Es un depurador muy primitivo que no necesita entorno grafico. Si existe entorno gréafico se puede usar DB

$lint fuente.c Depurador Iéxico, sintactico y semantico de programas C fuente. Simula la compilacion y te ve
informando de lo que has hecho.

$cflow fuente.c Permite obtener un diagrama de flujo simbdlico del programa que le hemos dado como
argumento.

$cxref fuente.c Permite obtener la lista de referencias externas que utiliza nuestro programa.
$..... fuente.c Mete sangrias en el fuente.

BIBLIOTECAS

Las bibliotecas pueden ser de enlace estatico o enlace dinamico.

ENLACE ESTATICO

Una biblioteca de enlace estatico es un contenedor de varios archivos.

$ar Crea un archivo contenedor de otros archivos.

$ar r Crea una biblioteca de enlace estatico.

$ar r SHOME/lib/libcomplejo.a mult.o add.o ==> Crea una biblioteca de enlace estatico, llamada
libcomplejo.a, que contiene los archivos mult.o y add.o. El nombre de la libreria tiene dos restricciones

importantes:

« Siempre debe comenzar por lib.
» Su extensioén ha de ser .a

El sistema contesta con el siguiente mensaje:

ar. creating /home/ust/lib/libcomplejo.a

Si no existe la libreria la crea, y si existe aflade los nuevos archivos a la libreria.

$ar t lista el contenido de la libreria

$ar d biblioteca médulo Borra el médulo de la libreria.

$ar x biblioteca modulo Extrae el médulo de la libreria al directorio actual como un archivo.
El comando ar no utiliza el signo menos para las sus modificadores.

Para generar un ejecutable cuyas referencias externas son a una libreria estatica se utiliza: $CC
—L/home/usr/lib complejo.c —lcomplejo -0 ejecl

La opcién —-L da el directorio donde se encuentra la libreria
La opcién —I da el nombre de la libreria(-lcomplejo indica: libcomplejo.a)
ENLACE DINAMICO (DLL) (MODULOS COMPARTIDOS)

No guarda en el ejecutable que creamos con CC el cédigo del médulo de la libreria, sino una referencia a I
DLL.

Una gran ventaja de las DLL es que puedo variar el cédigo del programa sin cambiar el contenido de este,
sino cambiando el contenido de la DLL. Para cambiar el contenido o afiadir médulos en la DLL tengo que
crear otra.

Las DLL se cargan en memoria y pueden ser usadas por varios programas que las referencian. Esta es la ¢
ventaja de las DLL.

En el directorio /usr/lib se encuentra el cédigo de las funciones UNIX, salvo las matematicas, y estan en su
version estatica (libc.a), y en su versién dinamica (libc.so).

$ldb argumento Si se le da como argumento a este programa un ejecutable, te devuelve como tiene
solucionada este programa su edicion de enlaces.Devuelve:

dynamic linker:ejec:file loaded:/ustr/lib/libc.so

$CC -G ==> Crea una DLL (Dinamic Linked Library)

$CC -G -0 /home/usr/lib/libcomplejo.so mult.o add.o ==> Crea una DLL que contiene los archivos mult.o y
add.o

$file archivo_biblioteca Se utiliza para saber el contenido de la DLL.

Variables de Entorno que intervienen en el Proceso de Creacion y Uso que se Linkeditan con DLLs:
LD_RUN_PATH, LD_LIBRARY_PATH

* LD_RUN_PATH: variable de entorno que permite incluir una lista de directorios que se incrustaran
dentro del ejecutable que hace uso de bibliotecas DLL incluidas en su ruta.
« LD LIBRARY_PATH: contiene una lista de directorios que se van a utilizar para obtener referencias
externas estéticas.
$CC -L/homel/lib complejo.c —Icomplejo —o ejecutable_dinamico

Para que busque una libreria estatica (.a) tengo que incluir uno de los siguientes modificadores:

e —dn =>Significa Dinamyc NO
» —Bstatic

Si decido modificar la DLL:
$CC -G -o libcomplejo.so mult.o ==> Ahora la libreria solo contendra el archivo mult.o

Si ahora intento compilar el fuente que referencia a las dos modulos dara un error, porque la libreria ahora
solo contiene un modulo (mult.o).

$CC complejo.c —Icomplejo —o ejec2 ==>Dara el siguiente error
undefined first referenced

symbol in file

add complejo.o

Id:ejec2:fatal error.symbol referencig errors. No output written to ejer2.
$ldd Permite examinar las bibliotecas externas de los programas con el fin de adecuarlas al enlace dindmic
$ldd -r complejo

dynamic linker:complejo:file loaded:/home/usr/lib/libcomplejo.so
dynamic linker:complejo:file loaded:/home/ustr/lib/libc.so

dynamic linker:complejo:relocation error:symbol not found:add

Para compilar con referencias estaticas:

$CC -dn al.c... ak.c -Im -o ejec3

Para referenciar desde un modulo de una DLL a otro modulo de otra DLL:
$CC -G -o libmia.so -Ldir f1.0 f2.0 f3.0 —~lcomp

« Averiguar que realiza lo siguiente:
$CC —-L/home/milib main.c fl1.c f2.c —Bstatic —Imia f3.c —Bdynamic —lcomp
CAPITULO lI: SUBSISTEMA DE ARCHIVOS

* Principios Generales
« Tipos de Subsistemas de Archivos

* S5

* Ufs

« Archivos y nodos de indices

* Estructuras de Datos

« Algoritmos de asignacién/desasignacion de espacio
« Funciones dependientes del sistema de archivos

« Sistema Virtual de Archivos VFS

* Estructuras de Datos
« Algoritmos
« Funciones Independientes del Sistema de Archivos.

* Llamadas al sistema. Interfaz UNIX S5 R4
1.PRINCIPIOS GENERALES

Un Subsistema de Archivos es una organizacion de datos dentro de un disco (también llamada particién).
Caracteristicas de un Subsistema de Archivos:

» Se establece Jerarquicamente (arbol invertido).

 Los archivos de datos no tienen un tipo predefinido de estructurar los datos.

* Incorpora técnicas de control de accesos: Cada archivo tiene unos permisos diferenciados
(propietario, grupo, otros).

« Asignacion dinamica de espacio en disco. Por defecto el UNIX admite como maximo 2147 millones
de bytes.

» Posee la caracteristica de manipular los dispositivos fisicos como archivos.

» Se permite la cohabitacion de distintos tipos de sistemas de archivos.

Vfs ==> Virtual File System. Se utiliza para poder acceder a cualquier tipo de particion. Debe encontrarse e
los sistemas que tengan varios tipos de subsistemas de archivos (ufs, veritas file system, s5).

2.TIPOS DE SUBSISTEMAS DE ARCHIVOS
En un mismo sistema UNIX podemos disponer de varios tipos de subsistemas de archivos situados en vari:
particiones. Para controlar esto se utiliza el subsistema de archivos vfs, que es un sistema virtual. Para cre:
una particiéon se utiliza el siguiente comando:

$mkfs —F <tipo particion> n° grupos_cilindros Blogues_ldgicos n°nodos-i Tamario

particion(Kbytes) nombre_fisico

Ademas las particiones se van a montar todas sobre un mismo arbol de directorios. Esto quiere decir que I
organizacion fisica de las particiones va a ser invisible para el usuario. En un directorio se montara la
particién y esa sera su ubicacién légica. Para montar una particion:

$mount /dev/<nombre particiébn> /<directorio al que se asocia la particion>
SUBSISTEMA DE FICHEROS SYSTEM 5

Es el sistema de archivos procedente de AT&T. Este sistema de archivos se podia exclusivamente manejal
informacién almacenada en Discos Duros y Floppys. La informacién se almacena en bloques.

Las técnicas de acceso permiten la recuperacién de n*bloques (hasta n=64). Esto significa que tengo que t
los buffers suficientes que permitan esto. Con mkfs formateo una particién y estructura los blogues. La
particion se divide en:

1 bloque para el area de BOOT. (512 bytes). Es el bloque nimero 0.Debera almacenarse el 2nd Le
Boot. Esto debe ser capaz de arrancar el sistema. Si no es un disco de arranque este bloque estara
vacio.

1 bloque que es el Superbloque. (512 bytes). Es un area administrativa. Es el bloque nimero 1, y
guarda una lista enlazada con las ubicaciones de los i—nodo libres.

« Lista en cuadricula que son los i-nodes.(Nodos de indice). Cada nodo—i ocupa 64 bytes. Se indican
los atributos de un archivo y su ubicacion fisica en disco. La cantidad de nodos—i que tengamos en |
particion va a ser el nimero maximo de archivos que vamos a poder tener en esa particion.

* Blogues de Almacenamiento:

- Bloque de datos.

- Bloque de punteros a bloques de datos.
— Punteros a bloques libres.

- Blogue no asignado por ningun archivo.
- Bloque de la lista de bloques libres.

NODO-|

También llamado i—nodo o i-node. Cada i—-nodo ocupa 64 bytes de los cuales 2 bytes pertenecen al modo
un archivo. Dentro del modo de un archivo cada bit tiene su significado.

[] L R w x R Ww x R w x |

Propietario Grupo Otros

Tipo Set-UserlD
Set-GrouplD

Sticky-Bit MODO

El Tipo puede ser: Ordinario, Directorio, Archivo orientado a bloques, Archivo orientado a caracter, FIFO,
Enlace simbdlico.

Tipo Valor Se crea con
Ordinario 1000 open(), creat()
Directorio 0100 mkdir()
Especial-Caracter 0010 mknod()
Especial-Bloque 0110 mknod()

Pipe 0001 mknod()
Enlace simbdlico 1010 link()

Inodo libre 0000

El nodo-i consta principalmente de los siguientes campos:

* Modo.

« N° Enlaces. Indica cuantas veces un archivo esta siendo referido en el arbol de directorios (hard
links).

e User-id

» Group-id

e Tamafio

« Direcciones de los bloques

* Fecha acceso. Fecha y hora que un archivo ha sido accudido.

» Fecha modlficacién

* Fecha creacién

TAMANOS de ARCHIVOS en una PARTICION SYSTEM 5

Tamafio Bloque Directo Simple Doble Triple

512 5.120 70.656 859.264 (8 MB) 1.091.200.000 (1 GB)
1024 10.240 272.384 |67 MB 17 GB

2048 20.480 1 MB 537 MB 275 GB

Esto es en teoria, ya que el campo tamafio en un nodo-i tiene 4 bytes, y por lo tanto el tamafio maximo
creable en una particion system 5 es de 4 GB.

ESTRUCTURA DE ACCESO A DATOS

La estructura de punteros de bloques para acceso a datos (acceso a bloques de datos), se jerarquiza de la
siguiente forma.

