¢ INTRODUCCIA N.

La MecAjnica del Suelo como una parte de las ciencias fA—sicas que tratan de explicar el mundo real, estudia
su comportamiento mediante la creaciA3n de modelos matemA ticos que sean capaces de predecir las
reacciones del terreno frente a unas determinadas solicitaciones. Dada la complejidad de la realidad fA—sica
del terreno, no puede esperarse que un A°nico modelo matemAjtico sirva para explicar todas las facetas de su
comportamiento.

Cuando la MecAjnica del Suelo comenzA3 a organizarse como un cuerpo de doctrina se encontrA3 con un
modelo matemA jtico muy perfeccionado, la teorA—a de la elasticidad, que se habA—a desarrollado a lo largo
del siglo XIX.

La teorA—a de la elasticidad permite asemejar el comportamiento de algunos suelos a un modelo elA;stico.
Sin embargo, para que esto sea posible se han de cumplir algunas condiciones como es que el suelo estA©
alejado de la rotura, es decir, sometido a un nivel de tensiones bajo. Por lo tanto, existen una serie de suelos
para los que no es aplicable el modelo elAstico.

¢ APLICACIA NDE LA TEORA A DEL SA LIDO ELA STICO.

El francA©s Boussinesq, en 1885, consiguiA3 resolver matemA jticamente el problema de calcular las
tensiones generadas por una carga puntual actuando normalmente sobre un semiespacio.

El espacio de Boussinesq es un ente que sustituye en primera aproximaciA3n al terreno. Para las aplicaciones
prA;cticas dicho espacio estA; limitado A°nicamente por un plano horizontal, constituyendo entonces el
semiespacio de Boussinesq. A ste es elAjstico, homogA®©neo e isA3tropo. Al decir elAjstico se entiende en
sentido restringido, es decir, se supone que cumple la ley de Hooke y que el coeficiente de elasticidad es el
mismo en tracciA3n que en compresiA3n. Se supone tambiA©n que la materia que constituye el semiespacio
tiene resistencia suficiente para seguir respondiendo elA;sticamente bajo las tensiones que se produzcan en
todos y en cada uno de los puntos del semiespacio.

Las fA3rmulas obtenidas por Boussinesq en coordenadas cilA—ndricas son:

En ninguna de las fA3rmulas aparece el coeficiente de elasticidad, las cuales dependen, en cambio del
coeficiente de Poisson, excepto en las fA3rmulas de I zy 1 rz.

El asiento de los puntos correspondientes a la superficie viene definido por:

La grAjfica corresponde a una hipA©rbola equilAjtera ya que I y s son las dos coordenadas cartesianas de la
deformada de la superficie. Se puede observar que en el punto de aplicaciA3n de la carga se corresponde con
un asiento infinito, lo cual no corresponde a la realidad, sino al empleo del concepto teA3rico de una carga
aislada concentrada, que produce esfuerzos infinitos en el punto de aplicaciA3n. Por ello, esta fA3rmula no
debe emplearse para el cAjlculo de asientos de puntos situados en el entorno de aquA©l.

En el caso que se desee conocer el asiento producido en un punto interior del terreno se tiene:
Esta expresiA3n no es mAjs que una generalizaciA3n de la referida a los puntos de la superficie, que se
obtiene haciendoI =1 /2. AdemAjs, esta expresiA3n permite conocer el asiento producido en terrenos

estratificados.

e Carga lineal aplicada sobre la superficie de un semiespacio elA jstico infinito.



Cuando la carga es vertical, la soluciAn de este caso corresponde a la integraciA3n de la del problema de
Boussinesq.

a Tabla3.3

TABLA 3.3 (I z=P A-Iq/z)

x/z |Iq x/z |Iq x/z |Iq x/z  |Iq
0.00 [0.6366 [0.20 ]0.5886 ]0.60 ]0.3441 |1.40 [0.0726
0.02 [0.6361 [0.24 ]0.5691 ]0.64 ]0.3203 |1.60 [0.0501
0.04 [0.6346 [0.28 ]0.5474 ]0.68 [0.2976 [1.80 [0.0353
0.06 [0.6320 [0.32 ]0.5238 ]0.72 ]0.2760 |2.00 [0.0254
0.08 [0.6284 [0.36 ]0.4989 10.76 ]0.2557 |2.20 [0.0186
0.1 ]0.6241 ]0.40 ]0.4731 ]0.80 ]0.2366 |2.50 [0.0120
0.12 ]0.6187 ]0.44 ]0.4468 10.90 ]0.1942 |2.70 [0.0092
0.14 10.6124 ]0.48 ]0.4204 ]1.00 ]0.1591 |3.00 [0.0063
0.16 ]0.6052 ]0.52 ]0.3944 (1.10 ]0.1302 }4.00 |0.0021

0.18 0.5973 10.56 [0.3689 |1.20 ([0.1068 [8.00 ]0.0001
e Cargas rA—gidas y flexibles.

En el medio elA;stico las tensiones y deformaciones son proporcionales a las fuerzas aplicadas al
semiespacio. En el caso de cargas lineales conocidas, aplicadas sobre un terreno, las soluciones estAjn
completamente definidas. Ahora bien, en el caso de cargas repartidas, la distribuciAn de la carga depende de
la interacciA3n tenso - deformacional entre la estructura total transmisora de la carga con su cimentaciA3n y el
terreno, con lo que la soluciA3n es algo mA;s compleja.

En el caso de un cA—rculo cargado uniformemente, el asiento del punto se halla integrando los acortamientos
de todos los elementos del terreno situados en la vertical del punto por debajo de A©I. De esta manera, el
asiento del centro resulta ser:

Donde p es la carga por unidad de superficie y R el radio del cA—rculo.
Si se hace lo mismo en la vertical del borde del cA—rculo se obtiene un asiento menor:
Por A°ltimo, el asiento medio serA|:

De estas fA3rmulas se pueden extraer dos conclusiones: la primera es que el asiento es proporcional al radio.
Esta relaciA3n dimensional es general, si bien requiere que el coeficiente de elasticidad sea constante con la
profundidad, y que A©sta sea infinita. En segundo lugar, se observa que pese a que todos los puntos estAjn
cargados uniformemente, el asiento no es igual en todos ellos, siendo mayor en el centro. Esto se suele
cumplir en casi todos los casos teA3ricos, con excepciA3n de algunos donde la capa compresible es pequeA+a
en relaciA3n con las dimensiones de Ajrea cargada, pero no suele coincidir con la realidad.

En la mayorA—a de los casos, la uniformidad de carga sobre una superficie no se traduce en una uniformidad
de asiento. AsA— pues, las cargas flexibles son las que se obtienen de considerar que las cargas aplicadas son
uniformes; mientras que las cargas rA—gidas se corresponden con las cargas reales.

¢ Carga en faja infinita distribuida uniformemente.

Para el caso de carga vertical las tensiones se obtienen por una doble integraciA3n de las fA3rmulas de
Boussinesq. Los valores de I estAjn en la tabla 3.4.



TABLA 34 (1 z=pA-Iz)
2 bz 10:00 0.25 0.50
Iz |[h it [iz [m it |z | i |
0.00 1.00 [1.00 [0.00 [1.00 [1.00 [0.00 J0.50 [0.50 J0.32
0.25 0.96 [0.45 10.00 [0.90 ]0.30 [0.13 Jo.50 [0.35 l0.30
0.50 0.82 [0.18 [0.00 [0.74 ]0.19 J0.16 0.48 [0.23 Jo.26
0.75 0.67 [0.08 [0.00 [0.61 [0.10 [0.13 J0.45 [0.14 Jo.20
1.00 0.55 [0.04 J0.00 0.51 ]0.05 J0.10 Jo.41 [0.09 lo.16
1.25 0.46 [0.02 10.00 [0.44 [0.03 [0.07 [0.37 [0.06 lo.12
1.50 0.40 [0.01 0.00 [0.38 [0.02 [0.06 [0.33 [0.04 Jo.10
175 0.35 [0.00 [0.00 [0.34 [0.01 [0.04 [0.30 [0.03 J0.08
2.00 0.31 [0.00 10.00 [0.31 ]0.00 [0.03 [0.28 [0.02 l0.06
3.00 0.21 [0.00 [0.00 [0.21 [0.00 [0.02 [0.20 [0.01 J0.03
4.00 0.16 10.00 [0.00 J0.16 [0.00 [0.01 [0.15 J0.00 J0.02
5.00 0.13 [0.00 [0.00 [0.13 [0.00 [0.00 Jo.12 ]0.00 J0.00
6.00 0.11 10.00 [0.00 J0.10 {0.00 [0.00 [0.10 J0.00 J0.00
2 bz 100 1.50 2.00
Iz |h it [z [m it |z |t |

0.00 0.00 [0.00 J0.00 [0.00 ]0.00 [0.00 [0.00 [0.00 J0.00
0.25 0.02 [0.17 10.05 [0.00 ]0.07 J0.01 0.00 [0.04 J0.00
0.50 0.08 [0.21 Jo.13 [0.02 ]o.12 J0.04 J0.00 [0.07 J0.02
0.75 0.15 [0.22 o.16 [0.04 ]o.14 ]0.07 J0.02 [0.10 Jo.04
1.00 0.19 [0.15 0.16 00.07 [0.14 ]0.10 [0.03 [0.13 J0.05
1.25 0.20 [0.11 o.14 J0.10 [0.12 J0.10 J0.04 [0.11 .07
1.50 0.21 [0.08 J0.13 0.1 [0.10 J0.10 J0.06 [0.10 0.07
1.75 0.21 [0.06 l0.11 [0.13 [0.09 [0.10 [0.07 0.09 J0.08
2.00 0.2 [0.05 [0.10 [0.13 [0.07 [0.10 0.08 [0.08 J0.08
3.00 0.17 [0.02 [0.06 [0.13 [0.03 [0.07 [0.10 [0.04 J0.07
4.00 0.14 [0.01 10.03 0.12 ]0.02 [0.05 [0.10 [0.03 J0.05
5.00 0.12 [0.00 [0.00 0.1 [0.00 [0.00 [0.09 [0.0 0.00
6.00 0.10 [0.00 [0.00 [0.10 ]0.00 [0.00 [0.09 [0.00 J0.00

¢ Carga circular uniforme.
Las tensiones verticales en el centro del cA-rculo son:
I z=qA (1-cos31+)=qA-Ic
Los valores estAjn en la tabla 3.8.
El asiento en la vertical del centro viene dado por la expresiA3n:
Siendo n = z/a. Los distintos valores se pueden obtener mediante la grAfica representada en la figura 3.43.
Bajo el centro del cA—-rculo el asiento toma la forma mA|s simple:

¢ Carga rectangular repartida uniformemente.



La presiA3n correspondiente a los bordes del rectAjngulo serAj:

Siendo:

R21=a2+7z2R22=b2+22R23=2a2+b2+22

Para determinar los valores de I z se puede emplear tambiA©n el Ajbaco de la figura 3.49.

Para hallar la tensiA3n en un punto de la vertical de un punto del interior del rectAjngulo, hay que sumar las
tensiones correspondientes a cuatro rectAjngulos parciales:

I z=1 21+1 zZIl+1 zII+1 2zVI

Para hallar la tensiA3n bajo un punto correspondiente al exterior del rectAjngulo, es preciso hallar primero el
vA®©rtice de un rectAjngulo que incluyera al cargado y tenga su vA©rtice sobre el punto considerado en
planta (rectAjngulo I), hay que restar la tensiA3n correspondlente a los rectAjngulos II y III y, finalmente,
aAadir la correspondiente al rectAjngulo IV, puesto que A©ste se ha restado dos veces.

[ z=2A-0 zI-1 zID

Por combinaciones anAjlogas puede resolverse cualquier caso de Ajrea cargada que pueda, exacta o
aproximadamente descomponerse en rectAjngulos. AsA— pues, se puede resolver un Ajrea de forma
elA—ptica asemejAjndolo a un rectAjngulo que tenga el mismo Ajrea y se adapte lo mejor posible a la elipse.

El asiento correspondiente a la esquina de un rectAjngulo cargado, de la dos a y b, sobre un espacio de
Boussinesq viene dado por la expresiA3n:

Siendo n = a/b. Esta expresiA3n se puede escribir tambiA©n como:
Los valores de k pueden tomarse de la figura siguiente:

Para puntos situados en el interior, o tambiA®©n en el exterior del rectAjngulo, se pueden usar superposiciones
de estados como en el caso de las tensiones. De esta manera se encuentra inmediatamente que el asiento en el
interior del rectAjngulo es mayor que en las esquinas.

El asiento en el centro se puede comprobar que es:
e CAPA HOMOGA NEA SOBRE BASE RA GIDA.

El caso de capa elAjstica homogA®©nea sobre base rA—gida es muy importante por su analogA—a con la
realidad. Es muy frecuente que un estrato deformable estA© limitado a cierta profundidad por una capa
rA—gida, como roca, gravas, arenas densas, etc.

Se presentan dos casos tA—picos segA°n que la interfaz entre la capa elAjstica y la base rA—gida sea lisa o
rugosa. La interfaz serA; rugosa en aquellos casos en que los puntos de la capa elAjstica en contacto con la
base rA—gida no tengan ningA°n tipo de desplazamiento; mientras que si la interfaz es lisa los puntos en
contacto con la base rA—gida se desplazan libremente, I = 0.

En ambos casos, las tensiones correspondientes estAjn afectadas por el coeficiente de Poisson. La influencia
de este coeficiente en las tensiones es mA—nima, aunque sA— loes para los asientos, los cuales se producen
sA3lo en superficie. Un valor negativo de una siento es indicativo de que el suelo se levanta, y es debido a
valores altos del coeficiente de Poisson.



¢ Carga aislada puntual.

Los valores de Il z y Isz se pueden obtener de las tablas 3.15 y 3.16, respectivamente.
¢ Carga lineal.

Los valores de Il z y Isz se pueden obtener de las tablas 3.17.
¢ Carga en faja.

Este es el modelo que mAjs se asemeja a una zapata corrida. Para este caso tanto las tensiones como los
asientos estAjn referidos a un punto situado en el extremo de la carga.

El valor de las tensiones se obtiene mediante la grA;fica de la figura 3.73, en funciA3n de la profundidad del
punto, z, la profundidad de la capa elA;stica, h, del ancho de la carga, B, del coeficiente de Poisson y las

condiciones del interfaz.

Por su parte, los asientos se obtienen mediante la grAifica de la figura 3.75, en funciA3n de la profundidad de
la capa elAstica, h, del ancho de la carga, B, y del coeficiente de Poisson.

¢ Carga circular.

Mediante la grA;fica 3.77 se pueden determinar las tensiones bajo el centro y el borde del cA—rculo, para una
interfaz rugosa.

La grA;fica 3.78 permite conocer el asiento en el centro, segA°n el tipo de interfaz y el coeficiente de Poisson.
¢ Carga rectangular.

3.5.1. SoluciA3n exacta.

El caso de una carga rectangular sobre una capa elAjstica, que se apoya en una base rA—gida, es de gran

interA©s para los estudios de cimentaciones, ya que en muchas ocasiones este esquema podrA; simular el

caso real con gran aproximaciA3n.

El valor de las tensiones verticales I z, bajo una esquina del rectAjngulo se presenta en los grA;ficos 3.81 a
3.85 para profundidades z = 0.2 h, 0.4 h, 0.6 h, 0.8 hy 1.0 h en funciA3n de las distintas relaciones, longitud

del rectAjngulo/ espesor de la capa y longitud del rectAjngulo/ ancho del rectAjngulo.

La tabulaciA3n se ha realizado para un coeficiente de Poisson I = 0.4, aunque este coeficiente tiene poca
influencia sobre las tensiones verticales, sobre todo en la parte superior.

Los asientos se pueden determinar mediante el grA;fico 3.86, para diferentes coeficientes de Poisson.

e MA©todo aproximado de Steinbrenner para el cA;lculo de asientos.

Steinbrenner calculA3 el descenso que se produce en un punto situado a una profundidad z bajo la esquina de
un rectA;jngulo cargado. Denominando como sz al asiento que experimentarA—a este punto en el caso de
profundidad indefinida del terreno compresible, se puede admitir que el asiento en la esquina, para el caso de

profundidad z de la capa compresible es:

I s=s0-sz



Siendo 50 el asiento de la superficie en el caso de profundidad indefinida.

El asiento de un punto situado a una profundidad z debajo de la esquina de un rectAjngulo cargado es igual a:
Donde A=1-1 2yB=1-1 -1 2.En cuanto alas funcionesI 1y 2 vienen dadas por las expresiones:
Siendo y . Los valoresde I 1y1 2 estAjn tabulados en la tabla 3.19.

Ejemplo

s = sl + sII + sIII + sIV

s=1 s1+1 s2+1 s3

s=(s0-s1)1 + (sl -s2)2+(s3)3

s =(0.038 - 0.022) + (0.001 - 0.001) + (0) =0.016 m

Ejemplo

s=4 A sl

s=4 A1 s1+1 s2)

s=4 A [(50-s)1 + (sl - s2)2]

s=4A-[(0.011 - 0.005) + (0) = 0.024 m

La diferencia entre los asientos en la superficie y la profundidad z, calculados por la tabla 3. 1?, darAjn
aproximadamente el asiento producido por la capa compresible. Steinbrenner hizo la operaciA3n de

sustituciA3n entre ambos valores en la expresiA3n:

Siendo f1 y f2 funciones que se hallan en el Ajbaco del grA;fico 3.90, y A y B los mismos coeficientes que se
han visto con anterioridad.

Para el terreno incompresible, es decir, paral = 1/2, la expresiA3n anterior se simplifica como:

En el caso de que se desconozca el valor exacto del coeficiente de Poisson se suele tomar un valor de I = 1/3,
con lo cual el asiento queda en funciA3n de F, que se obtiene a partir de la tabla 3.91.

En el caso de haber varias capas de diversa compresibilidad, resulta necesario efectuar el cAjlculo para
distintas profundidades, con los coeficientes de elasticidad correspondientes, sucesivamente, a cada una de las
capas. Por diferencia podrAj hallarse el asiento debido a A©stas, y con ello el asiento total de la superficie.

e SEMIESPACIO ELA STICO HETEROGA NEO.
e IntroducciA3n.

El modelo de suelo heterogA©neo mA|s simple que se puede proponer es el de un semiespacio elA;stico
infinito, en que el mA3dulo de Young E varA—e linealmente con la profundidad z segA®n la expresiAn:

ET=E0+1» A -z



Dos casos IA—mite se presentan, segA°n sean 0 el gradiente /», o el mA3dulo inicial EO.

El primer caso (I» = 0) conduce al semiespacio homogA®©neo ya estudiado anteriormente. El segundo caso
representa un modelo, en principio poco realista, ya que da un mA3dulo de elasticidad nulo en superficie.

Gibson estudiA3 con detalle este modelo, tambiA©n llamado modelo del coeficiente de balasto, con
resultados interesantes.

Se considera un cA—rculo de radio R cargado uniformemente con una presiA3n g, sobre un semiespacio F en
que el mA3dulo de elasticidad varA—e segA°n la ley:

E=DA -z
Se supone un coeficiente de Poisson %2 = 0.5. el asiento en el centro SO dependerA; de los parAjmetros que
definen el problema, que son R, I» y q (si el asiento no fuera en el centro dependerA—a de otros parAjmetros).

SegA°n el teorema de Buckingham, se debe poder establecer una relaciA3n adimensional del tipo:

Como el material es elAjstico, su respuesta a la carga serAj lineal, es decir, que el asiento serA; proporcional
a la carga:

a
EcuaciA3n en la que se comprueba que el asiento no depende del radio de la carga.

Puesto que el mA3dulo de Young y el coeficiente de Poisson no varA—an en direcciA3n horizontal, se puede
aplicar el principio de superposiciA3n de cargas colocadas en la superficie del semiespacio.

Sea un cA—rculo de radio RI cargado uniformemente con una presiA3n g, el asiento bajo el centro serAj:

Si se le superpone un Ajrea cargada con una presiA3n uniforme - g, dispuesta en un cA—rculo de radio R2 <
R1, concAOntrico con el anterior, el asiento en el centro serA;j ahora:

Es decir, que el asiento en el centro de una corona circular cargada uniformemente es siempre nulo.

Si se divide la corona circular en n sectores, el asiento total SO, por el mismo principio de la superposiciA3n
serA; la suma de los asientos debidos a los distintos sectores. AsA—:

S0=nA-{d S0)
Como el asiento total SO es cero, el asiento debido a un sector I S0 =0.

El asiento en un punto O exterior a un Ajrea cargada uniformemente es nulo. En cambio, si el punto se
encuentra dentro de Ajrea cargada, el asiento serA;:

En resumen, se puede afirmar que, este modelo elA;stico heterogA©neo conduce a que el asiento fuera de la
carga es nulo, y bajo la carga da un asiento proporcional a la misma, con un mA3dulo de reacciA3n K = I»/A,

si se define el mA3dulo de reacciA3n por la ecuaciA3n:

Sil

124 A=32a K=@23)

Sil a 12a Aa a



¢ Carga circular.
La ley de variaciA3n del mA3dulo de rigidez transversal se expresa como en el caso anterior por:
El asiento en el centro del cA—rculo puede expresarse por:

Siendo p la carga a que estA| sometida el Ajrea circular, a el radio del cA-rculo e I el coeficiente de
influencia definido en la grA;fica 3.100.

El asiento en superficie para distintos coeficientes de Poisson viene recogido en la grA;fica 3.101.
¢ Carga rectangular.
La ley de variaciA3n de la deformabilidad, referida al mA3dulo de Young es:

El asiento bajo la esquina del rectAjngulo viene recogido en la grAjfica 3.103, en funciA3n del coeficiente de
influencia:

Ejemplo
2=10m

q =100 kPa
I =13

EO =104 kPa

S0=4A-Sc

S0 =0.0263 m
En el caso de una carga rectangular sobre una capa elAjstica con heterogeneidad lineal apoyada en una base
rA—gida se puede extrapolar el mA®©todo de Steinbrenner, considerando un sistema multicapa en que los

mA3dulos de elasticidad de las distintas capas varA—an linealmente con la profundidad.

Con ello, el asiento en la esquina del rectAjngulo, para diversas formas del rectAjngulo y coeficientes de
Poisson, se recoge en la grA;fica 3.105.

Ejemplo

q =100 kPa
v=0.5

I =112

EO0 =104 kPa

S0=4A-Sc



S0 =0.008 m

e CARGAS RA GIDAS SOBRE EL SEMIESPACIO ELA STICO HOMOGA NEO.

En los casos en que las fuerzas se aplican a travA©s de cimentaciones de mayor o menor rigidez, las acciones
recA—procas del terreno y de la cimentaciA3n conducen a una distribuciA3n de las presiones en la cara de
contacto, que debe cumplir la condiciA3n de compatibilidad de deformaciones entre uno y otro elemento, y
que, a su vez, depende de sus caracterA—sticas de deformabilidad. Es por ello, que de forma general, no puede
determinarse de un modo inmediato, sino a travA©s del cAjlculo de las deformaciones de uno y otro.

Si sobre el semiespacio de Boussinesq se coloca un bloque absolutamente rA—gido de planta circular y se
aplica una fuerza, todos los puntos situados bajo el bloque sufrirAjn el mismo asiento, obligados por la rigidez
del bloque, de modo que la presiA3n en la cara de contacto no puede ser uniforme, sino que ha de ser mayor
en los bordes. Esta soluciA3n teA3rica no puede ser real, puesto que no existe un terreno capaz de resistir una
presiA3n infinita en ninguno de sus puntos.

¢ Carga en faja.

El giro producido por un momento M vale:

Este modelo sA3lo es vAjlido para cargas con una excentricidad menor a la mitad del lado de la zapata: e <
a/2.

¢ Placa circular.
El asiento del cA-rculo es:
P=pAI A-a
Siendo a el radio del cA—rculo.
El giro es en este caso de excentricidad pequeA=a:
ed Xal3
¢ Placa rectangular.
El asiento se obtiene a partir del grA;fico 3.122, tomando como a el lado mayor del rectAjngulo.

El giro se obtiene a partir del grA;fico 3.123, tomando como b el lado perpendicular al eje del momento.

Tema 13: EL SA LIDO ELA STICO

13

MECA NICA DEL SUELO
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