
INTRODUCCIÃ�N.• 

La MecÃ¡nica del Suelo como una parte de las ciencias fÃ−sicas que tratan de explicar el mundo real, estudia
su comportamiento mediante la creaciÃ³n de modelos matemÃ¡ticos que sean capaces de predecir las
reacciones del terreno frente a unas determinadas solicitaciones. Dada la complejidad de la realidad fÃ−sica
del terreno, no puede esperarse que un Ãºnico modelo matemÃ¡tico sirva para explicar todas las facetas de su
comportamiento.

Cuando la MecÃ¡nica del Suelo comenzÃ³ a organizarse como un cuerpo de doctrina se encontrÃ³ con un
modelo matemÃ¡tico muy perfeccionado, la teorÃ−a de la elasticidad, que se habÃ−a desarrollado a lo largo
del siglo XIX.

La teorÃ−a de la elasticidad permite asemejar el comportamiento de algunos suelos a un modelo elÃ¡stico.
Sin embargo, para que esto sea posible se han de cumplir algunas condiciones como es que el suelo estÃ©
alejado de la rotura, es decir, sometido a un nivel de tensiones bajo. Por lo tanto, existen una serie de suelos
para los que no es aplicable el modelo elÃ¡stico.

APLICACIÃ�N DE LA TEORÃ�A DEL SÃ�LIDO ELÃ�STICO.• 

El francÃ©s Boussinesq, en 1885, consiguiÃ³ resolver matemÃ¡ticamente el problema de calcular las
tensiones generadas por una carga puntual actuando normalmente sobre un semiespacio.

El espacio de Boussinesq es un ente que sustituye en primera aproximaciÃ³n al terreno. Para las aplicaciones
prÃ¡cticas dicho espacio estÃ¡ limitado Ãºnicamente por un plano horizontal, constituyendo entonces el
semiespacio de Boussinesq. Ã�ste es elÃ¡stico, homogÃ©neo e isÃ³tropo. Al decir elÃ¡stico se entiende en
sentido restringido, es decir, se supone que cumple la ley de Hooke y que el coeficiente de elasticidad es el
mismo en tracciÃ³n que en compresiÃ³n. Se supone tambiÃ©n que la materia que constituye el semiespacio
tiene resistencia suficiente para seguir respondiendo elÃ¡sticamente bajo las tensiones que se produzcan en
todos y en cada uno de los puntos del semiespacio.

Las fÃ³rmulas obtenidas por Boussinesq en coordenadas cilÃ−ndricas son:

En ninguna de las fÃ³rmulas aparece el coeficiente de elasticidad, las cuales dependen, en cambio del
coeficiente de Poisson, excepto en las fÃ³rmulas de Ï�z y Ï�rz.

El asiento de los puntos correspondientes a la superficie viene definido por:

La grÃ¡fica corresponde a una hipÃ©rbola equilÃ¡tera ya que Ï� y s son las dos coordenadas cartesianas de la
deformada de la superficie. Se puede observar que en el punto de aplicaciÃ³n de la carga se corresponde con
un asiento infinito, lo cual no corresponde a la realidad, sino al empleo del concepto teÃ³rico de una carga
aislada concentrada, que produce esfuerzos infinitos en el punto de aplicaciÃ³n. Por ello, esta fÃ³rmula no
debe emplearse para el cÃ¡lculo de asientos de puntos situados en el entorno de aquÃ©l.

En el caso que se desee conocer el asiento producido en un punto interior del terreno se tiene:

Esta expresiÃ³n no es mÃ¡s que una generalizaciÃ³n de la referida a los puntos de la superficie, que se
obtiene haciendo Ï� = Ï� / 2. AdemÃ¡s, esta expresiÃ³n permite conocer el asiento producido en terrenos
estratificados.

Carga lineal aplicada sobre la superficie de un semiespacio elÃ¡stico infinito.• 
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Cuando la carga es vertical, la soluciÃ³n de este caso corresponde a la integraciÃ³n de la del problema de
Boussinesq.

â�� Tabla 3.3

TABLA 3.3 (Ï�z = P Â· Iq/z)
x/z Iq x/z Iq x/z Iq x/z Iq
0.00 0.6366 0.20 0.5886 0.60 0.3441 1.40 0.0726
0.02 0.6361 0.24 0.5691 0.64 0.3203 1.60 0.0501
0.04 0.6346 0.28 0.5474 0.68 0.2976 1.80 0.0353
0.06 0.6320 0.32 0.5238 0.72 0.2760 2.00 0.0254
0.08 0.6284 0.36 0.4989 0.76 0.2557 2.20 0.0186
0.1 0.6241 0.40 0.4731 0.80 0.2366 2.50 0.0120
0.12 0.6187 0.44 0.4468 0.90 0.1942 2.70 0.0092
0.14 0.6124 0.48 0.4204 1.00 0.1591 3.00 0.0063
0.16 0.6052 0.52 0.3944 1.10 0.1302 4.00 0.0021
0.18 0.5973 0.56 0.3689 1.20 0.1068 8.00 0.0001
Cargas rÃ−gidas y flexibles.• 

En el medio elÃ¡stico las tensiones y deformaciones son proporcionales a las fuerzas aplicadas al
semiespacio. En el caso de cargas lineales conocidas, aplicadas sobre un terreno, las soluciones estÃ¡n
completamente definidas. Ahora bien, en el caso de cargas repartidas, la distribuciÃ³n de la carga depende de
la interacciÃ³n tenso - deformacional entre la estructura total transmisora de la carga con su cimentaciÃ³n y el
terreno, con lo que la soluciÃ³n es algo mÃ¡s compleja.

En el caso de un cÃ−rculo cargado uniformemente, el asiento del punto se halla integrando los acortamientos
de todos los elementos del terreno situados en la vertical del punto por debajo de Ã©l. De esta manera, el
asiento del centro resulta ser:

Donde p es la carga por unidad de superficie y R el radio del cÃ−rculo.

Si se hace lo mismo en la vertical del borde del cÃ−rculo se obtiene un asiento menor:

Por Ãºltimo, el asiento medio serÃ¡:

De estas fÃ³rmulas se pueden extraer dos conclusiones: la primera es que el asiento es proporcional al radio.
Esta relaciÃ³n dimensional es general, si bien requiere que el coeficiente de elasticidad sea constante con la
profundidad, y que Ã©sta sea infinita. En segundo lugar, se observa que pese a que todos los puntos estÃ¡n
cargados uniformemente, el asiento no es igual en todos ellos, siendo mayor en el centro. Esto se suele
cumplir en casi todos los casos teÃ³ricos, con excepciÃ³n de algunos donde la capa compresible es pequeÃ±a
en relaciÃ³n con las dimensiones de Ã¡rea cargada, pero no suele coincidir con la realidad.

En la mayorÃ−a de los casos, la uniformidad de carga sobre una superficie no se traduce en una uniformidad
de asiento. AsÃ− pues, las cargas flexibles son las que se obtienen de considerar que las cargas aplicadas son
uniformes; mientras que las cargas rÃ−gidas se corresponden con las cargas reales.

Carga en faja infinita distribuida uniformemente.• 

Para el caso de carga vertical las tensiones se obtienen por una doble integraciÃ³n de las fÃ³rmulas de
Boussinesq. Los valores de Ï� estÃ¡n en la tabla 3.4.
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TABLA 3.4 (Ï�z = p Â· Iz)

z/2a x/2a 0.00 0.25 0.50
Iz Ih It Iz Ih It Iz Ih It

0.00 1.00 1.00 0.00 1.00 1.00 0.00 0.50 0.50 0.32
0.25 0.96 0.45 0.00 0.90 0.30 0.13 0.50 0.35 0.30
0.50 0.82 0.18 0.00 0.74 0.19 0.16 0.48 0.23 0.26
0.75 0.67 0.08 0.00 0.61 0.10 0.13 0.45 0.14 0.20
1.00 0.55 0.04 0.00 0.51 0.05 0.10 0.41 0.09 0.16
1.25 0.46 0.02 0.00 0.44 0.03 0.07 0.37 0.06 0.12
1.50 0.40 0.01 0.00 0.38 0.02 0.06 0.33 0.04 0.10
1.75 0.35 0.00 0.00 0.34 0.01 0.04 0.30 0.03 0.08
2.00 0.31 0.00 0.00 0.31 0.00 0.03 0.28 0.02 0.06
3.00 0.21 0.00 0.00 0.21 0.00 0.02 0.20 0.01 0.03
4.00 0.16 0.00 0.00 0.16 0.00 0.01 0.15 0.00 0.02
5.00 0.13 0.00 0.00 0.13 0.00 0.00 0.12 0.00 0.00
6.00 0.11 0.00 0.00 0.10 0.00 0.00 0.10 0.00 0.00

z/2a x/2a 1.00 1.50 2.00
Iz Ih It Iz Ih It Iz Ih It

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.25 0.02 0.17 0.05 0.00 0.07 0.01 0.00 0.04 0.00
0.50 0.08 0.21 0.13 0.02 0.12 0.04 0.00 0.07 0.02
0.75 0.15 0.22 0.16 0.04 0.14 0.07 0.02 0.10 0.04
1.00 0.19 0.15 0.16 00.07 0.14 0.10 0.03 0.13 0.05
1.25 0.20 0.11 0.14 0.10 0.12 0.10 0.04 0.11 0.07
1.50 0.21 0.08 0.13 0.11 0.10 0.10 0.06 0.10 0.07
1.75 0.21 0.06 0.11 0.13 0.09 0.10 0.07 0.09 0.08
2.00 0.2 0.05 0.10 0.13 0.07 0.10 0.08 0.08 0.08
3.00 0.17 0.02 0.06 0.13 0.03 0.07 0.10 0.04 0.07
4.00 0.14 0.01 0.03 0.12 0.02 0.05 0.10 0.03 0.05
5.00 0.12 0.00 0.00 0.11 0.00 0.00 0.09 0.0 0.00
6.00 0.10 0.00 0.00 0.10 0.00 0.00 0.09 0.00 0.00
Carga circular uniforme.• 

Las tensiones verticales en el centro del cÃ−rculo son:

Ï�z = q Â· (1 - cos3 Î±) = q Â· Ic

Los valores estÃ¡n en la tabla 3.8.

El asiento en la vertical del centro viene dado por la expresiÃ³n:

Siendo n = z/a. Los distintos valores se pueden obtener mediante la grÃ¡fica representada en la figura 3.43.

Bajo el centro del cÃ−rculo el asiento toma la forma mÃ¡s simple:

Carga rectangular repartida uniformemente.• 
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La presiÃ³n correspondiente a los bordes del rectÃ¡ngulo serÃ¡:

Siendo:

R21 = a2 + z2 R22 = b2 + z2 R23 = a2 + b2 + z2

Para determinar los valores de Ï�z se puede emplear tambiÃ©n el Ã¡baco de la figura 3.49.

Para hallar la tensiÃ³n en un punto de la vertical de un punto del interior del rectÃ¡ngulo, hay que sumar las
tensiones correspondientes a cuatro rectÃ¡ngulos parciales:

Ï�z = Ï�zI + Ï�zII + Ï� zIII + Ï� zVI

Para hallar la tensiÃ³n bajo un punto correspondiente al exterior del rectÃ¡ngulo, es preciso hallar primero el
vÃ©rtice de un rectÃ¡ngulo que incluyera al cargado y tenga su vÃ©rtice sobre el punto considerado en
planta (rectÃ¡ngulo I), hay que restar la tensiÃ³n correspondiente a los rectÃ¡ngulos II y III y, finalmente,
aÃ±adir la correspondiente al rectÃ¡ngulo IV, puesto que Ã©ste se ha restado dos veces.

Ï�z = 2 Â· (Ï�zI - Ï�zII)

Por combinaciones anÃ¡logas puede resolverse cualquier caso de Ã¡rea cargada que pueda, exacta o
aproximadamente descomponerse en rectÃ¡ngulos. AsÃ− pues, se puede resolver un Ã¡rea de forma
elÃ−ptica asemejÃ¡ndolo a un rectÃ¡ngulo que tenga el mismo Ã¡rea y se adapte lo mejor posible a la elipse.

El asiento correspondiente a la esquina de un rectÃ¡ngulo cargado, de la dos a y b, sobre un espacio de
Boussinesq viene dado por la expresiÃ³n:

Siendo n = a/b. Esta expresiÃ³n se puede escribir tambiÃ©n como:

Los valores de k pueden tomarse de la figura siguiente:

Para puntos situados en el interior, o tambiÃ©n en el exterior del rectÃ¡ngulo, se pueden usar superposiciones
de estados como en el caso de las tensiones. De esta manera se encuentra inmediatamente que el asiento en el
interior del rectÃ¡ngulo es mayor que en las esquinas.

El asiento en el centro se puede comprobar que es:

CAPA HOMOGÃ�NEA SOBRE BASE RÃ�GIDA.• 

El caso de capa elÃ¡stica homogÃ©nea sobre base rÃ−gida es muy importante por su analogÃ−a con la
realidad. Es muy frecuente que un estrato deformable estÃ© limitado a cierta profundidad por una capa
rÃ−gida, como roca, gravas, arenas densas, etc.

Se presentan dos casos tÃ−picos segÃºn que la interfaz entre la capa elÃ¡stica y la base rÃ−gida sea lisa o
rugosa. La interfaz serÃ¡ rugosa en aquellos casos en que los puntos de la capa elÃ¡stica en contacto con la
base rÃ−gida no tengan ningÃºn tipo de desplazamiento; mientras que si la interfaz es lisa los puntos en
contacto con la base rÃ−gida se desplazan libremente, Ï� = 0.

En ambos casos, las tensiones correspondientes estÃ¡n afectadas por el coeficiente de Poisson. La influencia
de este coeficiente en las tensiones es mÃ−nima, aunque sÃ− loes para los asientos, los cuales se producen
sÃ³lo en superficie. Un valor negativo de una siento es indicativo de que el suelo se levanta, y es debido a
valores altos del coeficiente de Poisson.
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Carga aislada puntual.• 

Los valores de IÏ�z y Isz se pueden obtener de las tablas 3.15 y 3.16, respectivamente.

Carga lineal.• 

Los valores de IÏ�z y Isz se pueden obtener de las tablas 3.17.

Carga en faja.• 

Este es el modelo que mÃ¡s se asemeja a una zapata corrida. Para este caso tanto las tensiones como los
asientos estÃ¡n referidos a un punto situado en el extremo de la carga.

El valor de las tensiones se obtiene mediante la grÃ¡fica de la figura 3.73, en funciÃ³n de la profundidad del
punto, z, la profundidad de la capa elÃ¡stica, h, del ancho de la carga, B, del coeficiente de Poisson y las
condiciones del interfaz.

Por su parte, los asientos se obtienen mediante la grÃ¡fica de la figura 3.75, en funciÃ³n de la profundidad de
la capa elÃ¡stica, h, del ancho de la carga, B, y del coeficiente de Poisson.

Carga circular.• 

Mediante la grÃ¡fica 3.77 se pueden determinar las tensiones bajo el centro y el borde del cÃ−rculo, para una
interfaz rugosa.

La grÃ¡fica 3.78 permite conocer el asiento en el centro, segÃºn el tipo de interfaz y el coeficiente de Poisson.

Carga rectangular.• 

3.5.1. SoluciÃ³n exacta.

El caso de una carga rectangular sobre una capa elÃ¡stica, que se apoya en una base rÃ−gida, es de gran
interÃ©s para los estudios de cimentaciones, ya que en muchas ocasiones este esquema podrÃ¡ simular el
caso real con gran aproximaciÃ³n.

El valor de las tensiones verticales Ï�z, bajo una esquina del rectÃ¡ngulo se presenta en los grÃ¡ficos 3.81 a
3.85 para profundidades z = 0.2 h, 0.4 h, 0.6 h, 0.8 h y 1.0 h en funciÃ³n de las distintas relaciones, longitud
del rectÃ¡ngulo/ espesor de la capa y longitud del rectÃ¡ngulo/ ancho del rectÃ¡ngulo.

La tabulaciÃ³n se ha realizado para un coeficiente de Poisson Ï� = 0.4, aunque este coeficiente tiene poca
influencia sobre las tensiones verticales, sobre todo en la parte superior.

Los asientos se pueden determinar mediante el grÃ¡fico 3.86, para diferentes coeficientes de Poisson.

MÃ©todo aproximado de Steinbrenner para el cÃ¡lculo de asientos.• 

Steinbrenner calculÃ³ el descenso que se produce en un punto situado a una profundidad z bajo la esquina de
un rectÃ¡ngulo cargado. Denominando como sz al asiento que experimentarÃ−a este punto en el caso de
profundidad indefinida del terreno compresible, se puede admitir que el asiento en la esquina, para el caso de
profundidad z de la capa compresible es:

Î�s = s0 - sz
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Siendo s0 el asiento de la superficie en el caso de profundidad indefinida.

El asiento de un punto situado a una profundidad z debajo de la esquina de un rectÃ¡ngulo cargado es igual a:

Donde A = 1 - Ï�2 y B = 1 - Ï� - Ï�2. En cuanto a las funciones Ï�1 y Ï�2 vienen dadas por las expresiones:

Siendo y . Los valores de Ï�1 y Ï�2 estÃ¡n tabulados en la tabla 3.19.

Ejemplo

s = sI + sII + sIII + sIV

s = Î�s1 + Î�s2 + Î�s3

s = (s0 - s1)1 + (s1 - s2)2 + (s3)3

s = (0.038 - 0.022) + (0.001 - 0.001) + (0) = 0.016 m

Ejemplo

s = 4 Â· sI

s = 4 Â· (Î�s1 + Î�s2)

s = 4 Â· [(s0 - s1)1 + (s1 - s2)2]

s = 4 Â· [(0.011 - 0.005) + (0) = 0.024 m

La diferencia entre los asientos en la superficie y la profundidad z, calculados por la tabla 3.19, darÃ¡n
aproximadamente el asiento producido por la capa compresible. Steinbrenner hizo la operaciÃ³n de
sustituciÃ³n entre ambos valores en la expresiÃ³n:

Siendo f1 y f2 funciones que se hallan en el Ã¡baco del grÃ¡fico 3.90, y A y B los mismos coeficientes que se
han visto con anterioridad.

Para el terreno incompresible, es decir, para Ï� = 1/2, la expresiÃ³n anterior se simplifica como:

En el caso de que se desconozca el valor exacto del coeficiente de Poisson se suele tomar un valor de Ï� = 1/3,
con lo cual el asiento queda en funciÃ³n de F, que se obtiene a partir de la tabla 3.91.

En el caso de haber varias capas de diversa compresibilidad, resulta necesario efectuar el cÃ¡lculo para
distintas profundidades, con los coeficientes de elasticidad correspondientes, sucesivamente, a cada una de las
capas. Por diferencia podrÃ¡ hallarse el asiento debido a Ã©stas, y con ello el asiento total de la superficie.

SEMIESPACIO ELÃ�STICO HETEROGÃ�NEO.• 
IntroducciÃ³n.• 

El modelo de suelo heterogÃ©neo mÃ¡s simple que se puede proponer es el de un semiespacio elÃ¡stico
infinito, en que el mÃ³dulo de Young E varÃ−e linealmente con la profundidad z segÃºn la expresiÃ³n:

ET = E0 + Î» Â· z
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Dos casos lÃ−mite se presentan, segÃºn sean 0 el gradiente Î», o el mÃ³dulo inicial E0.

El primer caso (Î» = 0) conduce al semiespacio homogÃ©neo ya estudiado anteriormente. El segundo caso
representa un modelo, en principio poco realista, ya que da un mÃ³dulo de elasticidad nulo en superficie.

Gibson estudiÃ³ con detalle este modelo, tambiÃ©n llamado modelo del coeficiente de balasto, con
resultados interesantes.

Se considera un cÃ−rculo de radio R cargado uniformemente con una presiÃ³n q, sobre un semiespacio F en
que el mÃ³dulo de elasticidad varÃ−e segÃºn la ley:

E = Î» Â· z

Se supone un coeficiente de Poisson Î½ = 0.5. el asiento en el centro S0 dependerÃ¡ de los parÃ¡metros que
definen el problema, que son R, Î» y q (si el asiento no fuera en el centro dependerÃ−a de otros parÃ¡metros).
SegÃºn el teorema de Buckingham, se debe poder establecer una relaciÃ³n adimensional del tipo:

Como el material es elÃ¡stico, su respuesta a la carga serÃ¡ lineal, es decir, que el asiento serÃ¡ proporcional
a la carga:

â��

EcuaciÃ³n en la que se comprueba que el asiento no depende del radio de la carga.

Puesto que el mÃ³dulo de Young y el coeficiente de Poisson no varÃ−an en direcciÃ³n horizontal, se puede
aplicar el principio de superposiciÃ³n de cargas colocadas en la superficie del semiespacio.

Sea un cÃ−rculo de radio R1 cargado uniformemente con una presiÃ³n q, el asiento bajo el centro serÃ¡:

Si se le superpone un Ã¡rea cargada con una presiÃ³n uniforme - q, dispuesta en un cÃ−rculo de radio R2 <
R1, concÃ©ntrico con el anterior, el asiento en el centro serÃ¡ ahora:

Es decir, que el asiento en el centro de una corona circular cargada uniformemente es siempre nulo.

Si se divide la corona circular en n sectores, el asiento total S0, por el mismo principio de la superposiciÃ³n
serÃ¡ la suma de los asientos debidos a los distintos sectores. AsÃ−:

S0 = n Â· (Î�S0)

Como el asiento total S0 es cero, el asiento debido a un sector Î�S0 =0.

El asiento en un punto O exterior a un Ã¡rea cargada uniformemente es nulo. En cambio, si el punto se
encuentra dentro de Ã¡rea cargada, el asiento serÃ¡:

En resumen, se puede afirmar que, este modelo elÃ¡stico heterogÃ©neo conduce a que el asiento fuera de la
carga es nulo, y bajo la carga da un asiento proporcional a la misma, con un mÃ³dulo de reacciÃ³n K = Î»/A,
si se define el mÃ³dulo de reacciÃ³n por la ecuaciÃ³n:

Si Ï� = 1/2 â�� A = 3/2 â�� K = (2/3) Î»

Si Ï� â�  1/2 â�� A â�� â��
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Carga circular.• 

La ley de variaciÃ³n del mÃ³dulo de rigidez transversal se expresa como en el caso anterior por:

El asiento en el centro del cÃ−rculo puede expresarse por:

Siendo p la carga a que estÃ¡ sometida el Ã¡rea circular, a el radio del cÃ−rculo e I el coeficiente de
influencia definido en la grÃ¡fica 3.100.

El asiento en superficie para distintos coeficientes de Poisson viene recogido en la grÃ¡fica 3.101.

Carga rectangular.• 

La ley de variaciÃ³n de la deformabilidad, referida al mÃ³dulo de Young es:

El asiento bajo la esquina del rectÃ¡ngulo viene recogido en la grÃ¡fica 3.103, en funciÃ³n del coeficiente de
influencia:

Ejemplo

Î² = 10 m

q = 100 kPa

Ï� = 1/3

E0 = 104 kPa

S0 = 4 Â· Sc

â�� â��

S0 = 0.0263 m

En el caso de una carga rectangular sobre una capa elÃ¡stica con heterogeneidad lineal apoyada en una base
rÃ−gida se puede extrapolar el mÃ©todo de Steinbrenner, considerando un sistema multicapa en que los
mÃ³dulos de elasticidad de las distintas capas varÃ−an linealmente con la profundidad.

Con ello, el asiento en la esquina del rectÃ¡ngulo, para diversas formas del rectÃ¡ngulo y coeficientes de
Poisson, se recoge en la grÃ¡fica 3.105.

Ejemplo

q = 100 kPa

v = 0.5

Ï� = 1/2

E0 = 104 kPa

S0 = 4 Â· Sc
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â�� â��

S0 = 0.008 m

CARGAS RÃ�GIDAS SOBRE EL SEMIESPACIO ELÃ�STICO HOMOGÃ�NEO.• 

En los casos en que las fuerzas se aplican a travÃ©s de cimentaciones de mayor o menor rigidez, las acciones
recÃ−procas del terreno y de la cimentaciÃ³n conducen a una distribuciÃ³n de las presiones en la cara de
contacto, que debe cumplir la condiciÃ³n de compatibilidad de deformaciones entre uno y otro elemento, y
que, a su vez, depende de sus caracterÃ−sticas de deformabilidad. Es por ello, que de forma general, no puede
determinarse de un modo inmediato, sino a travÃ©s del cÃ¡lculo de las deformaciones de uno y otro.

Si sobre el semiespacio de Boussinesq se coloca un bloque absolutamente rÃ−gido de planta circular y se
aplica una fuerza, todos los puntos situados bajo el bloque sufrirÃ¡n el mismo asiento, obligados por la rigidez
del bloque, de modo que la presiÃ³n en la cara de contacto no puede ser uniforme, sino que ha de ser mayor
en los bordes. Esta soluciÃ³n teÃ³rica no puede ser real, puesto que no existe un terreno capaz de resistir una
presiÃ³n infinita en ninguno de sus puntos.

Carga en faja.• 

El giro producido por un momento M vale:

Este modelo sÃ³lo es vÃ¡lido para cargas con una excentricidad menor a la mitad del lado de la zapata: e <
a/2.

Placa circular.• 

El asiento del cÃ−rculo es:

P = p Â· Ï� Â· a

Siendo a el radio del cÃ−rculo.

El giro es en este caso de excentricidad pequeÃ±a:

e â�¤ a/3

Placa rectangular.• 

El asiento se obtiene a partir del grÃ¡fico 3.122, tomando como a el lado mayor del rectÃ¡ngulo.

El giro se obtiene a partir del grÃ¡fico 3.123, tomando como b el lado perpendicular al eje del momento.

Tema 13: EL SÃ�LIDO ELÃ�STICO

1

13

MECÃ�NICA DEL SUELO
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