
MICROCONTROLADOR

PIC 16C84

ESCUELA DE INGENIERIA

TECNICA INDUSTRIAL

BADAJOZ

SOFTWARE PIC 16C84

INTRODUCCION AL MICROCONTROLADOR PIC 16C84•

Casi desconocidos hace cinco años, los microcontroladores PIC 16CXX de Microchip actualmente se
encuentran en aparatos muy diversos como son: programadores domésticos, telemandos, termostatos
electrónicos, etc.

El motivo de su éxito se encuentra en su coste especialmente bajo, sus altas prestaciones y su reducido juego
de instrucciones (RISC), así como su estructura interna del tipo Harvard.

HARVARD: Casi todos los microcontroladores actuales utilizan la estructura de Von Neuman en la que la
memoria de programa contiene instrucciones y datos mecclados y se dispone de un único bus llamado bus de
datos por el que circulan a la vez los códigos de las instrucciones y los datos asociados a ellas.

Esta arquitectura presenta algunos problemas cuando se demanda rapidez, con lo que es preferible utilizar la
arquitectura denominada Harvard en la que instrucciones y datos están perfectamente diferenciados y se
emplean buses distintos.

Esta estructura no modifica nada desde el punto de vista del usuario y la velocidad de ejecución de los
programas es impresionante.

RISC: Significa Reduced Instruction Set Computer (Ordenador con juego de instrucciones reducido)

Pero no solamente significa esto sino que debe disponer de una estructura pipeline , lo cual permite ejecutar
como mínimo una instrucción mientras busca la siguiente, además también permite aumentar la velocidad de
ejecución en relación a los microcontroladores clásicos denominados CISC (Completex I.S.C).

Además los circuitos RISC, deben ejecutar todas las instrucciones a la misma velocidad.

El PIC 16C84 es un circuito RISC con lo que ganan en velocidad de trabajo y no es preciso trabajar con un
centenar de instrucciones, sino tan solo 35, sin que esto disminuya las prestaciones.

2− SEÑALES DISPONIBLES

2.1− ALIMENTACIÓN

VSS: Masa general.

VDD: Alimentación (positiva) debe estar comprendida entre 4 y 6v.

1

En elementos con el sufijo HS estará entre 4,5 y 5,5v.

En modo SLEEP deberá tener una alimentación de 1,5v para que la RAM interna conserve sus contenidos.

En general todas las reglas aplicables a la alimentación de microprocesadores son

aplicables también aquí como por ejemplo seria el condensador de desacoplo (0,1uF).

RELOJES•

hay dos pines de reloj que son OSC1 y OSC2 pudiéndose utilizar varios tipos de reloj.

En las versiones con ventana, el tipo de reloj utilizado se puede seleccionar mediante la programación de un
registro especial accesible únicamente al programar el circuito, esto se puede hacer con reloj de cristal de
cuarzo o como célula RC.

En las versiones sin ventana o OTP el reloj viene predeterminado en la cápsula teniendo cuatro encapsulados
distintos un función de dicho reloj interno:

XT: Oscilador de cuarzo estandart con una frecuencia máxima de 4 Mhz.

HS: Lo mismo pero de hasta 20 Mhz (High Speed).

RC: Oscilador RC funciona hasta a 4 Mhz pero con una estabilidad menor que el cuarzo.

LP: (Low power) versión para cuarzo, especial para aplicaciones de bajo consumo, su

frecuencia está limitada a 200 Mhz.

RESET•

La señal reset tiene como pin el denominado MLCR y se le añade una circuiteria para el reset manual en el
caso de que la velocidad de crecimiento de la señal de alimentación sea < 0,05 v/ms o si se requiere el acceso
al reset de forma manual.

RA0 − RA3•

Son los pines de entrada −salida del 0 al 3 del puerto A.

RA4•

Pin 4 de entrada−salida del puerto A común con la entrada de reloj externo del temporizador To.

RB0/INT•

Entrada−salida o del puerto B común con la entrada de interrupciones externas.

RB1 − RB7•

Entada−salida de la uno a la siete del puerto B.

2.7.1 − RB4 − RB7

2

Soportan además la función de interrupción por cambio de estado.

Figura 1.3 Patillaje del encapsulado 16C84

ARQUITECTURA INTERNA•

La memoria de programa esta organizada en palabras de 14 bits, el tamaño de la pila es de 8 niveles. Los
registros están organizados siempre del mismo modo, estando en las direcciones bajas los registros especiales
y de recursos y en las altas los de propósito general. El PC contiene 13 bits por lo que no se pueden
direccionar 8 Kbytes de memoria, como no hay mas que 1 Kbyte, el hecho de direccionar mas allá de este
valor hace que se vuelva al principio, como si los bits de mayor peso se ignoraran.

LOS REGISTROS INTERNOS•

Este gráfico representa la cartografía de la memoria de estos registros, obsérvese la utilización de dos paginas
de memoria, la primera o página cero, contiene los registros fundamentales de 00 a 1F.

La segunda o página una, contiene registros menos importantes, o asociados a registros de la página cero

00
Direccionamiento
indirecto

Direccionamiento
indirecto

80

01 RTCC OPTION 81

02 PCL PCL 82

03 STATUS STATUS 83

04 SFR FSR 84

05 PORT A TRIS A 85

06 PORT B TRIS B 86

07 87

08 EEDATA EECON1 88

09 EEADR EECON2 89

0A PCLATCH PCLATCH 8A

0B INTCON INTCON 8B

OC

2F

REGISTRO

DE

PROPOSITO
GENERAL

IDEM

PAGINA CERO

8C

AF

30

7F

B0

FF

PÁGINA 0 PÁGINA 1

Tabla 1.1 Organización de los registros internos.

Así el registro TRISA asociado al PORT A se encuentra en la misma dirección dentro de la página.

3

Determinados registros figuran en las dos páginas, por lo que son accesibles de la misma forma y sin
restricción, para facilitar de este modo la programación del circuito.

REGISTRO INDF (Dirección 00) O registro de indirección•

No tiene existencia física, por lo que no se podrá acceder a él. En realidad este registro sirve únicamente para
especificar la utilización del direccionamiento indirecto, por ejemplo de la forma siguiente:

ADDWF INDF.W Significa que se va a añadir, al contenido del registro W, el contenido del registro
apuntado por el registro FSR de dirección 04. Se realiza entonces el Direccionamiento indirecto con respecto
al contenido de FSR. Sirviéndose de INDF únicamente como modo de notación.

4.2− REGISTRO PCL (Dirección 02)

Es el PC o contador de programa, o mejor dicho los 8 bits de menor peso del PC, puesto que el PC debe tener
un tamaño de 13 bits, sus bits de mayor peso se llevan al registro PCLATCH, situado en las posiciones 0A y
8A.

Si el PC es destino de una instrucción, el contenido de PCLATCH se tiene en cuenta automáticamente.

Para las instrucciones GOTO y CALL, tiene lugar la misma operación, teniendo en cuenta el hecho de que el
PC está codificado con 11 bits en la propia instrucción.

Los ocho registros de pila no aparecen en la gráfica anterior por no estar situados en el mismo espacio de
memoria que los demás. Son registros de trece bits capaces de contener íntegramente al PC. Su utilización es
automática, ya que el PC se introduce en la pila durante la ejecución de una instrucción CALL o de una
interrupción, y se extrae de la pila durante la ejecución del retorno correspondiente. Estos registros de pila
deben considerarse como un buffer de memoria circular, lo que significa que, si se introduce más de 8 valores
del PC, el noveno valor tomará la posición del primero, y así sucesivamente.

Obsérvese que ningún bit de registro indica que la pila está llena, por lo que debe tener cuidado de que no se
desborde, excepto si quiere realizar operaciones de retorno especiales.

Figura 1.4 Principio de determinación de los bits

de mayor peso del PC por PCLATCH

REGISTRO STATUS (Dirección 03) o Registro de Estado•

Este registro contiene un cierto número de bits de estado de la unidad central, pero también los bits de
selección de páginas, que ahora se denominan RP1 y RP0. Se pueden leer o escribir como cualquier otro
registro, dando por supuesto que determinados bits de estado no se modificarán después de un intento de
escritura. Cada bit de este registro tiene un significado particular que es el que sigue.

BIT 0 o bit de carry (C). Bit de acarreo para las operaciones de suma y resta. Se pone a uno
mediante las instrusiones ADDWF y SUBWF, si se genera un acarreo en el bit de mayor peso.

•

Este bit también lo utilizan las instrucciones de rotación.

BIT 1 o bit DC (Digit Carry). Este es un bit de acarreo de dígito, para por ejemplo la aritmética en
BCD. Se pone a uno con las instrucciones ADDWF y SUBWF, si se genera un acarreo del bit 3 al
grupo de cuatro bits superior.

•

4

BIT 2 o bit Z (zero). Este bit se pone a uno si el resultado de la operación aritmética o lógica
ejecutada es nulo.

•

BIT 3 o bit PD (Power Down). Este bit se pone a uno durante la conexión a la alimentación del
circuito, o durante la ejecución de una instrucción CLRWDT relativa al temporizador watchdog. Se
pone a cero mediante una instrucción SLEEP.

•

BIT 4 o bit TO (Time Out). Este bit se pone a uno durante una conexión a la alimentación o durante
la ejecución de una instrucción CLRWDT o SLEEP. Se pone a cero cuando el temporizador
Watchdog se desborda.

•

BIT 5 Y 6 o bits RP0 y RP1. Estos bits sirven para seleccionar las páginas de memoria de programa.
La tabla 1.5 precisa su modo de utilización, que es perfectamente lógico sabiendo que cada página
contiene 128 bytes.

•

BIT 7 o bit IRP. Este bit está previsto para un futuro direccionamiento de paginado indirecto, pero no
se utiliza en el 16C84. Tan solo se usa para compatibilidad con las futuras versiones, por lo que se
debe poner a cero.

•

Tabla 1.2 Programación de los bits de

selección de página del STATUS

4.4− REGISTRO FSR (Dirección 04) o registro de selección de registro.

El contenido del SFR se utiliza para el direccionamiento indirecto. Este registro contiene 8 bits, tamaño
suficiente para las versiones actuales del PIC 16CXX; no obstante, es preciso saber que en direccionamiento
indirecto, puede construirse una dirección de 9 bits utilizando el contenido de este registro y el bit IRP del
registro de estado. Esta función no se utiliza en el 16C84, sino que está prevista para extensiones futuras, por
ello el que se aconseje el no uso del bit IRP.

4.5− REGISTRO PCLATCH (Dirección 0A y 8A)

Se cita este registro sólo como recordatorio, ya que lo vimos en el PCL.

4.6− REGISTRO INTCON (Dirección 0B y 8B)

Este registro sirve para el control global de las interrupciones y para indicar la procedencia de algunas de
ellas, gracias a los bits de estado. Se dispone de cuatro potenciales recursos de interrupción.

Una fuente externa a través del pin RB0/INT.•
El desbordamiento del temporizador 0.•
Un cambio de estado en los pines RB4 a RB7.•
Programación de la EEPROM de datos.•

Cada bit del registro INTCON tiene un significado concreto que es el que sigue:

BIT 0 o bit RBIF (RB Interrupt Flag). Si se pone a 1, este bit indica un cambio de estado en una de
las líneas de RB4 a RB7 del puerto B.

•

BIT 1 o bit INTF (Interrupt Flag). Si se pone a 1, este bit indica una interrupción provocada por la
línea RB0/INT del puerto B.

•

BIT 2 o bit T0IF (Timer 0 Interrupt Flag). Si se pone a 1, este bit indica un desbordamiento del
temporizador 0.

•

BIT 3 o bit RBIE (RB Interrupt Enable). Si se pone a uno este bit, autoriza las interrupciones
provocadas por un cambio de estado de las líneas RB4 a RB7 del puerto B.

•

BIT 4 o bit INTE (Interrupt Enable). Si se pone a 1, este bit autoriza las interrupciones provocadas•

5

por la línea RB0/INT del puerto B.
BIT 5 o bit T0IE (Timer 0 Interrupt Enable). Si está a uno, este bit autoriza las interrupciones
debidas al desbordamiento del temporizador 0.

•

BIT 6 o bit EEIE (EEPROM Interrupt Enable). Si está a uno, este bit autoriza las interrupciones que
proceden de la memoria EEPROM de datos.

•

BIT 7 o bit GIE (Global Interrupt Enable). Si se pone a uno, este bit autoriza todas las interrupciones
que estén enmascaradas mediante sus bits individuales de activación, a cero las inhibe.

•

Cada activador individual debe ponerse a cero por software.

Solamente hay un vector indicador de interrupción (dirección 0004), por lo que se debe comprobar estos bits
en el programa de interrupción para saber cual es la fuente de la misma.

Cuando llega una interrupción, el PIC pone el bit GIE a cero, de forma que no se perturbe el tratamiento de la
interrupción en curso, debido a otras interrupciones eventuales. Este bit se pone automáticamente a uno al
terminar el programa de interrupción, con la ejecución de la instrucción RETFIE.

Los indicadores de interrupciones correspondientes permanecen funcionales incluso cuando no se han
autorizado.

− PUERTOS PARALELO•

Se dispone de dos puertos paralelo A y B. Las líneas de estos puertos se pueden programar individualmente
como entradas o como salidas, y se utilizan casi de la misma forma.

Teniendo en cuenta que el encapsulado se propone con 18 pines, determinadas líneas de estos puertos se
comparten con otros recursos internos.

4.7.1− PUERTO A

Dispone de un ancho de 5 bits. Las líneas RA0 a RA3 respetan el esquema de la figura.

A la salida está provista de un buffer CMOS, entrada y salida pasan por un latch.

La línea RA4 adopta una estructura diferente, su salida es de tipo drenador abierto, y la entrada está provista
de un Trigger Schmitt. Es común con la entrada externa del temporizador 0.

El sentido de trabajo de todas las líneas de este puerto se controla mediante el registro TRISA, en el que un bit
a cero activa la línea correspondiente como salida, y un bit a 1 como entrada, Evidentemente, después de un
reset, todos los bits del registro TRISA quedan a uno.

PUERTO B•

El puerto B es un puerto bidireccional de 8 bits completo, en el que sólo una línea se comparte con otro
recurso interno. Las líneas RB0 a RB3 adoptan la estructura interna indicada en la figura mientras que las
líneas RB4 a RB7 la de la figura . La razón de ser de esta diferencia radica en el hecho de que es posible
programar la generación de una interrupción durante un cambio de estado de una cualquiera de las líneas RB4
a RB7.

Todas las líneas del puerto B disponen de una resistencia de pull−up de alto valor, conectada a la
alimentación. Esta resistencia se puede activar o no gracias al bit RBPU del registro OPTION. Dicha
activación afecta a todas las líneas del puerto B y se desactiva tras un reset al igual que las líneas configuradas

6

como salida.

El sentido de trabajo de cada una de las líneas de este puerto es controlado por el registro TRISB, en el que un
bit a cero hace que la línea correspondiente se active como salida, y un bit a 1 como entrada, tras un reset
todos los bits se ponen a 1.

− TEMPORIZADOR•

El PIC 16C84 no contiene mas que un temporizador analógico. Genera una interrupción cada vez que el
temporizador se desborda de FF a 00. El modo de funcionamiento y programación se realiza a través del
registro OPTION.

Puede recibir su señal directamente, o a través de un predivisor, siendo hecha la selección mediante el bit
PSA. Si se selecciona el predivisor, su tasa de división se programa a través de tres bits: PS0, PS1, PS2 .

En todos los casos, la señal utilizada puede proceder de una cualquiera de las dos fuentes posibles,
dependiendo del estado del bit de selección RTS. O procede del oscilador de reloj después de la división por
cuatro, por lo que está a la frecuencia del reloj de instrucción, o del pin ToCKI. La puerta OR EXCLUSIVO,
controlada por el bit RTE, permite seleccionar si el incremento del registro TMR0 se producirá sobre el flanco
de subida o bajada.

Los bits RTE, RTS, PSA y PS0 a PS2 que se emplean para configurar este temporizador están contenidos en
el registro OPTION. Cada bit de este registro tiene un significado especial que es el que sigue:

REG. OPTION

BITs 0, 1, 2. Bits PS0, PS1, PS2. Estos bits sirven para definir la tasa de división del predivisor ,
como muestra la tabla, esta tasa difiere dependiendo de que el predivisor este asignado al
temporizador 0 o al watchdog.

•

Tabla 1.3 Programación de los bits de

selección de tasa del predivisor en el registro OPTION

BIT 3 o bit PSA (Prescaler Assignment). Si este bit está a cero, el predivisor está asignado al
temporizador 0. Si está a uno estará asignado al watchdog.

•

BIT 4 o bit RTE (Timer 0 signal Edge). Si este bit está a cero, el contenido del registro TMR0 se
incrementará en un flanco de subida de la señal aplicada al pin RA4/ToCK1; si está a uno, se
incrementará con el flanco de bajada.

•

BIT 5 o bit RTS (Timer 0 signal source). Si este bit está a cero, el temporizador utilizará el reloj
interno. Si está a uno, utilizará la señal aplicada al pin RA4/T0CK1.

•

BIT 6 o bit INTEDG (Interrupt edge). Este bit define el sentido del flanco que provocará la
interrupción a través del pin externo INT. Un uno activa el flanco de subida y un cero un flanco de
bajada.

•

BIT 7 o bit RBPU (RB Pull Up enable). Si está a cero, este bit activa las resistencias de pull up a
nivel alto, previstas en la entrada del puerto B.

•

(Estos últimos dos bits no se usan en el temporizador 0)

El registro TMR0 se incrementa en una unidad con cada impulso de reloj seleccionado mediante el registro
OPTION. Cada vez que llega al valor FF, vuelve a 00 generando una interrupción, si se ha autorizado, y
continua su ciclo indefinidamente.

7

El registro TMR0 se puede leer o escribir directamente con cualquier instrucción, con el fin de conocer su
posición actual, o para inicializarlo en un estado determinado. Es importante saber que después de cualquier
escritura en este registro, es necesario un retardo de dos ciclos de instrucción para que se retome la
incrementación. Este retraso es independiente de la fuente de reloj usada. Las instrucciones concernidas son
MOVF TMRO o CLRF TMR0.

Para comprobar el paso por cero sin inferir en el desarrollo regular del recuento, es aconsejable utilizar, por
ejemplo, una instrucción MOVF TMR0,W, que no hace mas que una lectura.

El reloj interno deja de funcionar en el modo SLEEP, por lo que no se puede contar con sus interrupciones en
este modo ni por consiguiente, que salga de este modo de funcionamiento por medio de dicha interrupción.

Obsérvese que todas las instrucciones que escriben en el TMR0 ponen a cero al predivisor, cuando éste está
asignado al temporizador.

− TEMPORIZADOR WATCHDOG•

Está provisto de su propio oscilador interno autónomo con célula RC interna, por lo que no necesita ningún
componente externo y continua funcionando incluso cuando el reloj del PIC se para durante, por ejemplo, la
instrucción SLEEP.

Este temporizador cuenta de forma permanente, y cuando se desborda, es decir cuando llega a FF, hace que se
genere un reset del microcontrolador. Si el PIC está en modo sleep cuando se produce este desbordamiento,
tiene por efecto que se salga de este modo.

Si no se desea utilizar el watchdog, es posible desactivarlo escribiendo un 0 en un bit específico del circuito
durante su programación. Este bit no es direccionable, pero todos los programadores saben acceder a él.

El tiempo típico de desbordamiento de este temporizador es de 18 ms, pero puede variar algo con la tensión de
alimentación y la temperatura. Si no es muy largo, el predivisor del que hemos hablado puede asignarse al
watchdog gracias al bit PSA del registro OPTION. En estas condiciones, las tasas de predivisión definidas por
este registro varían , pero teniendo en cuenta el máximo permitido de 128 ms, es posible obtener tiempos de
desbordamiento de hasta 2.5 s.

Las instrucciones CLRWDT y SLEEP ponen a cero al watchdog y a uno el bit T0 del registro de estado. Esto
evita que se generen resets indeseados, como por ejemplo cuando se está en modo sleep. Estas instrucciones
también ponen a cero el predivisor, si este está asignado al watchdog.

Figura Temporizador Watchdog.

− MEMORIA EEPROM DE DATOS•

El PIC 16C84 contiene una EEPROM de datos de 16 bytes. Esta memoria no forma parte del espacio
direccionable y solo es accesible para lectura y escritura a través de dos registros: EEDATA en la dirección 08
para los datos, y un registro EEADR en la dirección 09 para las direcciones. Dos registros de control,
EECON1 en la dirección 88 y EECON2 en la dirección 89, permiten definir el modo de funcionamiento de
esta memoria.

Esta memoria no emplea ningún recurso de alimentación externo, y funciona en todo el rango de alimentación
autorizado. Su duración típica de programación es de 10 ms. Se controla mediante un temporizador interno, el
cual le descarga a usted de realizar cualquier medida de tiempo por software.

8

Si se desea escribir en una posición de memoria ya ocupada, automáticamente se borra el contenido que había
y se introduce el nuevo dato, por lo que no hay comando de borrado.

El principio de utilización de esta EEPROM en modo lectura es muy simple, y sigue los siguientes pasos:

Escritura de la dirección que hay que leer en el registro EEADR•
Puesta a uno del bit RD del registro EECON1•
Lectura del dato así direccionado en el registro EEDATA•

Teniendo en cuenta la velocidad de funcionamiento de esta memoria, el dato está disponible en EEDATA
después de que el bit RD se pone a uno, por lo que es posible leerlo mediante la instrucción que sigue
inmediatamente a la que pone a este bit a uno.

La escritura en esta memoria, que consiste en realidad en una programación, ya que estamos trabajando con
una EEPROM, es algo mas complicada por evidentes razones de seguridad. Este proceso se debe desarrollar
de la forma siguiente:

Escritura de la dirección en la que desea escribir en el registro EEADR.•
Escritura del dato en el registro EEDATA.•

Ejecución de un programa tipo:

MOVLW 55

MOVWF EECON2

MOVLW AA

MOVWF EECON2

BSF EECON1,WR

Esta última instrucción inicia el proceso de escritura. Cuando termina, el bit EEIF está a uno y si la última
instrucción EEPROM ha sido activada por medio del bit EEIE del registro INTCON, se genera dicha
interrupción. El bit EEIF debe ponerse a cero por software.

El programa consiste en escribir 55 seguido de AA en el registro EECON2 como medida de seguridad , con el
fin de evitar que un programa que tenga un despiste pueda programar la EEPROM por accidente,
manipulando simplemente los bits del EECON1.

El registro de control EECON1 contiene un determinado número de bits de control, cuyo significado es el que
sigue:

BIT 0 o bit RD (Read Data). Este bit debe ponerse a uno para leer un dato. El circuito lo pone
automáticamente a cero.

•

BIT 1 o bit WR (Write data). Este bit debe ponerse a uno para escribir un dato. El circuito lo pone
automáticamente a cero.

•

BIT 2 o bit WREN (Write Enable). Si este bit está a cero, impide cualquier escritura en la
EEPROM. Debe ponerse a uno para autorizar la escritura.

•

BIT 3 o bit WRERR (Write Error). Este bit se pone a uno si se produce un error de escritura después
de una parada prematura (reset o watchdog). En estas condiciones, los contenidos de EEDATA y
EEADR no varían, para permitir una repetición correcta de la operación.

•

9

BIT 4 o bit EEIF (EEPROM Interupt flag). Este bit se pone a uno al terminar una escritura y debe
ponerse a cero por software

•

El registro EECON2 no tiene existencia física, por lo que no se puede leer, tan solo sirve para el proceso de
protección en escritura detallado anteriormente.

− RESET E INTERRUPCIONES•
− FUENTES DE RESET•

Un reset puede ser provocado por diversas fuentes:

Una conexión a la alimentación del circuito.•
Una acción sobre el pin MLCR mientras que el circuito está en modo normal.•
Una acción sobre el pin MLCR mientras que el circuito está en modo SLEEP.•
Un desbordamiento del watchdog, mientras el circuito está en modo normal.•
Un desbordamiento del watchdog, mientras el circuito está en modo SLEEP.•

El comportamiento del circuito y el estado de los registros afectados por un reset son diferentes dependiendo
de la situación que se produzca. Es posible distinguir por software el origen del reset. Para ello, basta con leer
los bits TO y PD del registro de estado como se muestra el la tabla adjunta:

TO PD ORIGEN DEL RESET

0 0 Watchdog en modo SLEEP

0 1 Watchdog en funcionamiento normal

−− 0 MLRC en modo SLEEP

1 1 Alimentación

−− −− MLRC en funcionamiento normal

Tabla 1.4 Determinación del origen de un reset por medio de la lectura de los bits T0 y PD.

En todos los casos, al salir del modo SLEEP mediante el watchdog o una interrupción, el contador de
programa PC se pone a 000. Por tanto, la primera instrucción ejecutable de su programa debe encontrarse en
esta dirección.

Cuando se sale del modo SLEEP mediante el temporizador watchdog, el PC se incrementa en una unidad para
pasar a la instrucción que sigue a la instrucción SLEEP, igual que cuando se sale de este modo mediante una
interrupción (si el bit GIE del registro INTCON está a uno).

(u) = no cambia (x) = desconocido (−) = no existe (?) = depende de otras condiciones

Tabla 1.5 Estado de los registros después de los diferentes tipos de reset posibles.

Las posibles fuentes de reset afectan de forma diversa a los contenidos de los diferentes registros de control,
de estado o de datos. En la descripción de cada registro hemos indicado el estado de los bits después de un
reset de alimentación. En la tabla anterior encontrará estas mismas indicaciones, pero más completas.

Es aconsejable examinar esta tabla después de un reset antes de cualquier utilización, excepto en el caso de
que reinicialice cada registro.

− FUENTES DE INTERRUPCIÓN•

10

Se dispone de cuatro fuentes de interrupción distintas, que se autorizan o no mediante la puesta a uno de los
correspondientes bits del registro INTCON (cada una de las cuales dispone de su propio flag
independientemente de que hayan sido autorizadas o no).

La siguiente figura muestra una representación electrónica de la lógica de interrupciones. Se ve claramente
que cada bit de indicación de interrupción, se tiene en cuenta si la correspondiente puerta AND se abre
mediante el bit de autorización, XXXE, que corresponde. También se pueden autorizar todas en bloque , o no
, gracias al bit GIE del registro INTCON.

Ver como se puede hacer salir al PIC del modo SLEEP o generar una verdadera interrupción si está en modo
normal.

Figura Esquema del principio de la lógica de interrupción.

Existe un único vector de interrupción en la dirección 004. Sea cual sea la interrupción, el PC se carga
mediante 004 y a continuación, debe comprobar los diferentes indicadores para saber cuál es el elemento que
interrumpe.

Durante esta operación, el bit GIE está a cero, para impedir que se tenga en cuenta cualquier nueva
interrupción. Después de la ejecución de una instrucción de retorno RETFIE, se pone automáticamente a uno.
No está previsto ningún mecanismo de puesta a cero de los bits de indicación de interrupción, por lo que es su
programa de tratamiento de interrupciones el que debe encargarse de poner estos bits a cero. Si no es así, no
podrá salir de ellas.

Durante la interrupción, el único registro que se salvaguarda en la pila es el PC. Si se desea preservar el
contenido de otro registro, tendrá que hacerlo de forma manual.

6. − DIRECCIONAMIENTOS

Los modos de Direccionamientos son muy pocos y como veremos a continuación, muy a menudo son parte
integrante de la propia instrucción.

INMEDIATO•

El dato manipulado por la instrucción se codifica con la propia instrucción. En este caso, el dato en cuestión
se denomina literal, nombre que mantendremos a lo largo de todo el capítulo, con el fin de ser coherentes con
las denominaciones adoptadas por Microchip en todos sus documentos.

MOVLW k Coloca el literal k, que es un valor cualquiera codificado con 8 bits, en el registro . de trabajo w.

DIRECTO•

Es el modo más usado, ya que como hemos visto en los capítulos anteriores, la memoria RAM está dividida
en registros específicos y en un conjunto de registros de propósito general. Este modo consiste en codificar el
nombre del o de los registros en cuestión directamente en la instrucción.

MOVWF f Desplaza el contenido del registro w al registro f

El registro f se referencia mediante su número codificado con 5 o 7 bits, siendo este número en realidad la
dirección del byte de la RAM correspondiente, después de la utilización del mecanismo de paginación de la
memoria, si es necesario.

11

BIT A BIT•

Manipulación de un bit individual en cualquier registro. Este modo de direccionamiento no se utiliza nunca
solo, sino que siempre va emparejado con el modo de direccionamiento directo.

BCF f , b Pone a cero el bit número b del registro f

El registro f se codifica como ya indicamos anteriormente, y b es el número del bit de este registro, codificado
sólo con tres bits, ya que no puede variar más que de 0 a 7.

INDIRECTO•

Es el modo más potente y de el ya hemos hablado anteriormente en los registros INDF y FSR.

Recordemos rápidamente que el registro FSR es el de selección de registro, en el que se introduce el número
del registro direccionado. Lo único extraño del PIC es el modo de notación correspondiente que utiliza el
registro INDF, como por ejemplo en:

MOVWF fo Desplaza el contenido de w al registro apuntado por el registro FSR.

La notación fo únicamente sirve para indicar el direccionamiento indirecto y por tanto, la utilización del
registro FSR como puntero. Incluso cuando esto le parezca pobre, sobre todo si está acostumbrado a otros
microcontroladores, éstos son todos los modos de direccionamientos del PIC 16C84. Sin embargo, teniendo
en cuenta la eficacia de la estructura de los circuitos y su juego de instrucciones, estos modos le permitirán
realizar un buen trabajo.

Antes de concluir este apartado, observe que nos hemos olvidado del tradicional modo RELATIVO, el cual
permite en las arquitecturas clásicas los saltos para por ejemplo, los bucles condicionales. Cuando lea la
descripción de las instrucciones de bucle, comprenderá por qué no existe este modo de direccionamiento en
este circuito.

JUEGO DE INSTRUCCIONES•

Con el fin de proporcionarle un texto tan practico como sea posible, para cada instrucción que se presenta se
indica:

Su sintaxis, indicando la notación de forma precisa.•
Su codificación con 14 bits•

Este último punto, no le interesa en lo que concierne a la programación propiamente dicha, ya que estos bits
los genera el ensamblador, por supuesto: pero le permitirán comprender cómo se llegan a codificar las
instrucciones y los modos de direccionamiento. Además, también le permitirá comprender los límites de los
tamaños impuestos a determinados datos, límites que se deben exclusivamente al número de bits que se
pueden utilizar.

Número de palabras y el número de ciclos de máquina utilizados. Puede así comprobar que el principio
fundamental de la arquitectura RISC se respeta, con una instrucción por ciclo, salvo raras ocasiones.

•

La representación esquemática de la operación realizada por la instrucción.•
Los bits del registro de estado a los que afecta esta operación.•
Comentarios extraídos de la documentación del fabricante o de nuestra experiencia personal cuando sus
explicaciones son algo confusas.

•

12

La notación adoptada para los datos y direcciones manipuladas por las instrucciones es muy sencilla, y es
como sigue:

f representa un número de registro, codificado con siete bits•
b representa en número de bit, codificado con tres bits. El bit 0 es siempre el bit de menor peso.•
k representa un dato, el literal mencionado antes. EL número de bits que se emplea para su
codificación es variable, dependiendo de la instrucción.

•

Un determinado número de instrucciones (ADDWF, ANDWF, etc.) utilizan una notación especial que es:

ADDWF f,d

f es el número del registro, como ya sabemos, y d puede tomar el valor 0 o 1, y cambia el comportamiento de
la instrucción. Si d está a cero, el resultado se introduce en el registro W, mientras que si d está a uno, el
resultado se introduce en el registro f. Las instrucciones de este tipo son, en realidad, dobles ya que,
dependiendo del valor de d, realizan:

W operación f −−−−− W si d = 0

W operación f −−−−− f si d = 1

El segundo punto que nos gustaría resaltar concierne a las instrucciones de bucle condicional. Por ejemplo:

BTFSC f,b

Ya sabemos que esta instrucción comprueba el bit b del registro f. El significado de esta instrucción es Bit
Test Skip if Clear, por lo que hace un salto (skip) si el bit está a cero (clear). Veamos como ocurre esto:

Si el bit está a uno, es decir, si la condición que se comprueba no se cumple, el programa continua su
desarrollo normal de forma secuencial

•

Si el bit está a cero, es decir, si la condición que se comprueba se cumple, el programa salta a la
instrucción que sigue a BTFSC en el programa.

•

Si desea, como generalmente es el caso, saltar a alguna otra parte del programa dependiendo del resultado de
la prueba, generalmente adoptará la siguiente sintaxis:

GOTO k o CALL k

Procediendo de esta forma, si la condición es falsa, debe ejecutar la parte de programa llamada por GOTO o
CALL, mientras que si la condición es verdadera, el programa continua con la instrucción que sigue a GOTO
o a CALL ya que, en ese caso, se salta justamente esta línea.

Obsérvese que este método, que puede parecer curioso a primera vista, en realidad es muy práctico para tratar
los bits de los registros en función de condiciones externas. Así, si un interruptor está conectado a una línea de
un puerto paralelo y en función de su estado, debe posicionar un relé controlado por otra línea del puerto
paralelo, bastará con hacer:

BTFSC f,b

Donde b es el número de bit que corresponde al interruptor sobre el puerto en cuestión.

13

BCF f,b

Donde b es el número de bit que activa el relé del puerto en cuestión.

Este tratamiento especial de las instrucciones de prueba permiten comprender por qué, al principio del
capítulo, le indicábamos que realmente el direccionamiento relativo no existía.

Las demás instrucciones son más clásicas, pero no obstante, nos detendremos un momento en las
instrucciones CALL, que es una llamada a una subrutina ,y GOTO, que es un salto incondicional.

En estos dos casos anteriores, la dirección llamada parece que está codificada con un número insuficiente de
bits. En realidad, está codificada con 14 bits, pero los bits que faltan proceden del PCLATCH.

Tenga también cuidado en las llamadas a subrutinas, de no anidar más llamadas que los niveles que contiene
la pila, ocho en nuestro caso.

NEMÓNICO OPERACIÓN DESCRIPCIÓN
14 BITS

MSb LSb
EXAD RELOJ

BITS DE

ESTADO

ADDWF f,d w+f d Suma W y f 00 0111dfff ffff 07ff 1 C,DC,Z

ANDWF f,d w&f d AND entre W y f 00 0101dfff ffff 05ff 1 Z

CLRF f 0 f Pone a cero f 00 00011fff ffff 018f 1 Z

CLRW − 0 w Pone a cero W 00 00010000 00110100 1 Z

COMF f,d ^f d Complementa f 00 0101dfff ffff 09ff 1 Z

DECF f,d f−1 d Decrementa f 00 0011dfff ffff 03ff 1 Z

DECFSZ f,d f−1 d skip if zero Dec f, salta si es 0 00 1011dfff ffff 0Bff 1, (2) NONE

INCF f,d f+1 d Incrementa f 00 1010dfff ffff 0Aff 1 Z

INCFSZ f,d f+1 d skip if zero Inc f, salta si es 0 00 1111dfff ffff 0Fff 1, (2) NONE

IORWF f,d w v f d
OR inclusivo W con
f

00 0100dfff ffff 04ff 1 Z

MOVF f,d f d
Mueve f. mira si es
0

00 1000dfff ffff 08ff 1 Z

MOVWF f,d w d Mueve W a f 00 00001fff ffff 008f 1 NONE

NOP − −−− No operación 00 00000xx0 0000 0000 1 NONE

RLF f,d Rota izq f con carry 00 1101dfff ffff 0Dff 1 C

RRF f,d
Rota drch f con
carry

00 1100dfff ffff 0Cff 1 C

SUBWF f,d Resta W con f 00 0010dfff ffff 02ff 1 C,DC,Z

SWAPF f,d 4LSB con 4MSB 00 1110dfff ffff 0Eff 1 NONE

XORWF f,d w + f d or exc OR exc W con f 00 0110dfff ffff 06ff 1 Z

Instrucciones en los registros bit por bit

BCF f,d o f(d) Borra f 01 00bbbfff ffff 1bff 1 NONE

BSF f,d 1 f(d) Pone a 1 f 01 01bbbfff ffff 1bff 1 NONE

BTFSC f,d
Salta si b(f)=0 1
instr

01 10bbbfff ffff 1bff 1, (2) NONE

BTFSS f,d
Salta si b(f)=1 1
instr

01 11bbbfff ffff 1bff 1, (2) NONE

14

Instrucciones con literales y de control

ADDLW f,d k + w w Añade literal k a W 11 111x
kkkk
kkkk

3Ekk 1 C,DC,Z

ANDLW f,d k & w w AND literal con W 11 1001
kkkk
kkkk

39kk 1 Z

CALL f,d Llama a subrutina 10 0kkk
kkkk
kkkk

2kkk 2

CLRWDT f,d Borra el watchdog 00 00000110 01000064 1 TO, PD

GOTO f,d Salta a nueva direcc10 1kkk
kkkk
kkkk

2kkk 2 NONE

IORLW f,d k v w w
OR incl literal con
W

11 1000
kkkk
kkkk

38kk 1 Z

MOVLW f,d k w Carga literal en W 11 00xx
kkkk
kkkk

30kk 1 NONE

RETFIE f,d
Retorno
interrupción

00 00000000 10010009 2 NONE

RETLW f,d
RETFIE +
MOVLW

11 01xx
kkkk
kkkk

34kk 2 NONE

RETURN f,d TOS PC Retorno subrutina 00 00000000 10000008 2 NONE

SLEEP f,d 0WDT stop oscila Modo SLEEP 00 00000110 00110063 1 TO, PD

SUBLW f,d k − w w Resta W con literal 11 110x
kkkk
kkkk

3Ckk 1 C,DC,Z

XORLW f,d k + w w or excl
OR exc literal con
W

11 1010
kkkk
kkkk

3Akk 1 Z

OPTION W OPTION regis
CargaW en reg
option

00 00000110 00100062 1 NONE

TRIST f Tristate port f
Carga W en reg
trist

00 00000110 0fff 006f 1 NONE

ADDLW Añade el contenido de W al literal k, y almacena el resultado en W.

ADDWF Añade el contenido de W al de f, y almacena el resultado en W si d = 0, y en f si d = 1.

ANDLW
Efectúa un AND lógico entre el contenido de W y el literal k, y almacena el resultado
en W.

ANDWF
Efectúa un AND lógico entre el contenido de W y el contenido de f y coloca el
resultado en W si: d = 0, y en f si d = 1.

BCF Pone a cero el bit número b de f

BSF Pone a uno el bit número b de f

BTFSC como
Si el bit número b de f es nulo, la instrucción que sigue a ésta se ignora y se tratará
una NOP. En este caso, y solo en el, la instrucción precisará dos ciclos para ejecutarse

BTFSS
Si el bit número b de f está a uno, la instrucción que sigue a ésta se ignora y se tratará
como una NOP. En este caso, y solo en el, la instrucción precisará dos ciclos para
ejecutarse

CALL

Salvaguarda la dirección de vuelta en la pila y después llama a la subrutina situada en
la

dirección cargada en el PC. También hay que posicionar correctamente el registro
PCLATCH antes de ejecutarla.

15

CLRF Pone el contenido de f a cero y activa el bit Z.

CLRW Pone el contenido del registro W a cero y activa el bit Z.

CLRWDT Pone a cero el registro contador del temporizador Watchdog, así como el predivisor.

COMF
Hace el complemento de f bit a bit. El resultado se almacena de nuevo en: f si d = 1, y
en W si d = 0 (en este caso, f no varía).

DECF
Decrementa el contenido de f en una unidad. El resultado se almacena de nuevo en: f
si d = 1, y en W si d = 0 (en este caso, f no varía).

DECFSZ
Decrementa el contenido de f en una unidad. El resultado se almacena de nuevo en: f
si d = 1, y en W si d = 0 (en este caso, f no varía). Si el resultado es nulo, se ignora la
siguiente instrucción y en ese caso, ésta instrucción dura dos ciclos.

GOTO
Llama a la subrutina situada en la dirección cargada en el PC También hay que
posicionar correctamente el registro PCLATCH antes de ejecutarla.

INCF
Incrementa el contenido de f en una unidad. El resultado se almacena de nuevo en: f si
d = 1, y en W si d = 0 (en este caso, f no varía).

INCFSZ

Incrementa el contenido de f en una unidad. El resultado se almacena de nuevo en:

f si d = 1, y en W si d = 0 (en este caso, f no varía). Si el resultado es nulo, se ignora la
siguiente instrucción y en ese caso, ésta instrucción dura dos ciclos.

IORLW
Efectúa un OR lógico inclusivo entre el contenido de W y el literal k, y almacena el
resultado en W.

IORWF
Efectúa un OR lógico inclusivo entre el contenido de W y el contenido de f, y almacena
el resultado en: f si d = 1, y en W si d = 0

MOVF
Desplaza el contenido de f a f si d = 1 ó a W si d = 0 Este desplazamiento que parece
inútil, permite comprobar el contenido de f con respecto a cero, ya que esta
instrucción actúa sobre el bit Z.

MOVLW Carga W con el literal k.

MOVWF Carga f con el contenido de W.

NOP Solamente consume tiempo de máquina, (un ciclo).

OPTION
Carga el registro OPTION con el contenido de W. Esta instrucción no debe usarse, tan
solo existe por compatibilidad con circuitos superiores.

RETFIE
Carga el PC con el valor que se encuentra en la parte alta de la pila, asegurando así la
vuelta de la instrucción. Pone a uno el bit GIE, para autorizar de nuevo que se tengan
en cuenta las interrupciones. Dura dos ciclos.

RETLW
Carga W con el literal k, y después carga el PC con el valor que se encuentra en la
parte superior de la pila, efectuando así un retorno de la subrutina. Dura 2 ciclos

RETURN
Carga el PC con el valor que se encuentra en la parte alta de la pila, efectuando así
una vuelta de subrutina. Se trata de la instrucción RETLW simplificada. Dura 2 ciclos

RLF
Rotación de un bit a la izquierda del contenido de f, pasando por el bit de acarreo C.
Si d = 1 el resultado se almacena en f, si d = 0 el resultado se almacena en W.

RRF
Rotación de un bit a la izquierda del contenido de f, pasando por el bit de acarreo C.
Si d = 1 el resultado se almacena en f, si d = 0 el resultado se almacena en W.

SLEEP Pone el circuito en modo sleep con parada del oscilador.

SUBLW
Sustrae el contenido de W del literal k, y almacena el resultado en W. La sustracción
se realiza en complemento a dos.

SUBWF
Sustrae el contenido de W del contenido de f, y almacena el resultado en: W si d = 0 y
en f si d = 1. La sustracción se realiza en complemento a dos.

SWAPF

16

Intercambia los cuatro bits de mayor peso con los cuatro de menor peso de f, y
almacena el resultado en f si d = 1, o en W si d = 0.

TRIS
Carga el contenido de W en el registro tris del puerto f. Esta instrucción no debe
usarse, tan solo existe por compatibilidad con circuitos superiores.

XORLW
Efectúa un OR lógico exclusivo entre el contenido de W y el literal k, y almacena el
resultado en W.

XORWF
Efectúa un OR lógico exclusivo entre el contenido de W y el contenido de f, y almacena
el resultado en f si d = 1 y en W si d = 0.

− SISTEMA DE DESARROLLO•
ENSAMBLADOR Y COMPILADOR•

En primer lugar, un sistema de desarrollo está formado por un ensamblador y uno o varios compiladores
adaptados al lenguaje de alto nivel que se desea utilizar para programar.

El ensamblador traduce las instrucciones que se han escrito usando los nemónicos del lenguaje máquina, a
código binario ejecutable por el microcontrolador. La secuencia de nemónicos se llama listado o código fuente
del programa, mientras que el código binario se llama objeto o ejecutable.

El compilador traduce las instrucciones que se han escrito en lenguaje de alto nivel, que constituyen también
lo que se llama listado o código fuente, a código binario ejecutable por el microcontrolador que constituye el
código objeto.

En un sistema de desarrollo bien concebido, es primordial que el compilador utilizado para el lenguaje de alto
nivel tenga una interfaz perfecta con el ensamblador, de forma que se puedan insertar subrutinas en lenguaje
máquina en el mismo seno del programa de alto nivel.

Estos dos programas deben ejecutarse sobre una máquina denominada host, ó plataforma de desarrollo. Esta
máquina puede ser de diversas formas, la solución más generalizada, es un compatible PC el cual permite
minimizar la inversión.

Una vez que el programa se ha escrito y ensamblado o compilado sobre la máquina host, se está en posesión
de un binario ejecutable. Es casi indispensable probar este programa, haciéndole funcionar en condiciones tan
próximas como sea posible a las de utilización real. Para hacer esto, existen varias posibles soluciones.

EMULADOR Y SIMULADOR•

Utilizar un emulador es la solución más costosa, es un montaje especial, que puede ser muy complejo y que se
comporta exactamente como el microcontrolador al que reemplaza.

Como el emulador es una versión fragmentada del microcontrolador al que reemplaza, se tiene acceso a las
distintas señales internas de éste y en particular, se puede saber por cuales direcciones pasa el programa, que
ocurre en los diversos registros de los periféricos internos, etc. Del mismo modo, se puede introducir puntos
de parada, para leer el estado de ciertas memorias o de ciertos registros, y ejecutar en tiempo real.

La segunda solución no siempre permite realizar todas las pruebas necesarias. Consiste en emplear un
simulador, el cual es un programa escrito especialmente para el microcontrolador que se va a simular.

Por tanto, el simulador es un producto mucho más sencillo que el emulador, ya que no es más que un
programa. Por tanto, su precio de coste es mucho más bajo.

17

El simulador realiza la ejecución del programa, aproximadamente, de 10 a 100 veces menos deprisa que lo
haría el mismo programa directamente sobre el microcontrolador, por eso determinadas operaciones, en las
que son necesarios tiempos muy precisos o críticos, no se puede probar mediante la simulación. No obstante,
bien utilizado permite desarrollar aplicaciones interesantes mediante una inversión mínima.

DESARROLLO SOFTWARE CON MEDIOS REDUCIDOS•

Para determinado número de aplicaciones, y en el caso que nos ocupa, a veces es posible no hacer uso del
emulador gracias a la comercialización por parte de Microchip, de kits de desarrollo que contienen un buen
ensamblador y simulador.

− EJEMPLO•

Diseñar un programa que de una frecuencia de salida de 1 KHz por el pin B0 del puerto B, el cual estará
ofreciendo un pulso positivo proporcional a una entrada exterior, y el resto a cero hasta completar la duración
total de la frecuencia anteriormente mencionada.

El pulso positivo tendrá una duración máxima de un milisegundo y su relación con la entrada será lineal como
se muestra en la figura.

El valor máximo de la entrada, será de 255 en digital, que corresponderá con una duración de un milisegundo
del pulso positivo, y el mínimo de un valor 0, que corresponderá con un pulso positivo de duración nula.

La entrada mencionada se dará por el puerto A.

Cada vez que se desborde el temporizador decrementaré un registro cargado inicialmente a FF en digital, con
lo que estaré contando 256 x 255 pulsos de reloj (65280 pulsos).

Tengo que dar una frecuencia de salida de 1 KHz, por lo tanto, como la entrada máxima de 255 debe
corresponder con un pulso positivo de un milisegundo, tendré:

65280 −−−−−−−−− 1 KHz

1 −−−−−−−−− ? 0.015318Hz

Le asignaré una tasa de división de 256, por lo que la frecuencia del reloj deberá ser de 3.92156 Hz.

El registro OPTION, tras la puesta en marcha del circuito, están a uno todos sus bits, por lo que debo poner el
bit 3 de este registro a cero para asignar dicha predivisión. El registro OPTION ocupa la posición 81 de la
página uno dentro de los registros internos.

El PORT A inicialmente está configurado como entrada por tener todos los bits del registro TRISA a uno, y
como quiero sacar los pulsos por el bit uno de dicho puerto, pondré a cero dicho bit del registro TRISA.

El registro TRISA ocupa la posición 85 de la página uno dentro de los registros internos.

INICIO:

BCF 81,03 ; pone a cero el bit 3 del registro OPTION con lo que asigno el

predivisor al temporizador. PS0,PS1,PS2 tienen el valor 1,1,1 en el

18

registro OPTION.

MOVLW FF ; carga el registro de trabajo (W) con el literal FF.

MOVWF 1C ; carga el literal FF en un registro de propósito general (1C).

MOVF f6,01 ; pone el registro f6 (PORT B) en el registro W, actuando esta

operación sobre el bit de cero en el caso de que en el PORT B

estuviese el valor cero.

BTFSC f3, 02 ; ignora la siguiente instrucción, tratándola como una operación NOP,

en el caso de que el bit 2 del registro f3 (STATUS) sea cero, es decir

si la ultima operación es distinta de cero.

GOTO INICIO ; salta a inicio solamente en el caso de que la entrada del puerto B sea

nula.

BCF 85,01 ; Pone a cero el bit 1 del registro TRISA, asignándolo así como salida.

BSF f5, 01 ; pone a uno el bit 1 del PORT A, o bit RA1, que será la salida del

sistema.

MOVWF 0C ; carga el registro 0C con el contenido del registro W que es el valor

leído en el PORT B.

CUENTA:

GOTO ENTRADA ; salta a la posición de memoria entrada

CUENTA1:

BCF 0B, 02 ; pone a cero el bit 2 del registro INTCON

(debe hacerse por software).

DEC 1C, 01 ; decrementa el registro 1C, el cual estaba inicialmente cargado con el

literal FF.

DECFSZ 0C, 01 ; decrementa 0C y guarda en 0C, el cual estaba inicialmente cargado

con el valor del PORT B y saltará la siguiente instrucción en el caso

de que el resultado sea cero.

19

GOTO CUENTA ; salta a la posición de memoria cuenta, solamente no leerá esta

instrucción en el caso de que el registro 0C llegue a cero.

BCF f5, 01 ; pone a cero el bit 1 del PORT A o bit RA1.

GOTO FINAL ; salta a la posición de memoria final.

ENTRADA:

BTFSC 0B, 02 ; saltará la siguiente instrucción, si el bit 2 del registro INTCON es cero,

es decir, en el caso de que no se halla producido overflow en el

temporizador.

RETURN ; retorna a la última llamada de subrutina producida. Carga el PC con el

valor que se encuentra en la parte superior de la pila. (*)

GOTO ENTRADA ; salta a la posición de memoria entrada.

GOTO CUENTA1 ; (*)

FINAL:

BTFSS 0B, 02 ; saltará la siguiente instrucción, si el bit 2 del registro INTCON es uno,

es decir, en el caso de que si se halla producido overflow en el

temporizador.

GOTO FINAL ; salta a la posición de memoria final, esta instrucción se leerá en el

caso de que aun no se halla producido overflow.

BCF 0B, 02 ; pone a cero el bit 2 del registro INTCON (flag de overflow)

DECFSZ 1C, 01 ; decrementa el registro 1C, el cual estaba inicialmente cargado con el

literal FF y saltará la siguiente instrucción si el resultado es cero.

GOTO FINAL ; salta a la posición de memoria final.

GOTO INICIO ; comienza de nuevo el programa.

(*) Los ocho registros de pila deben considerarse como un buffer de memoria circular, lo que significa que,
si se introducen más de ocho valores del PC, el noveno valor tomará la posición del primero, y así
sucesivamente.

La posición de memoria final se usa para completar el ciclo y que éste tenga la frecuencia deseada,

20

y solamente se accederá a ella una vez se complete el ciclo de salida en alto del PORTA.

La posición de memoria entrada se usa para detectar el overflow del timer, y tendrá ciclos con la posición

cuenta para ir decrementando los registros 0C y 1C

33

21

